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Abstract—Relay attackers can forward messages between a
contactless EMV bank card and a shop reader, making it possible
to wirelessly pickpocket money. To protect against this, Apple Pay
requires a user’s fingerprint or Face ID to authorise payments,
while Mastercard and Visa have proposed protocols to stop such
relay attacks. We investigate transport payment modes and find
that we can build on relaying to bypass the Apple Pay lock screen,
and illicitly pay from a locked iPhone to any EMV reader, for
any amount, without user authorisation. We show that Visa’s
proposed relay-countermeasure can be bypassed using rooted
smart phones. We analyse Mastercard’s relay protection, and
show that its timing bounds could be more reliably imposed at
the ISO 14443 protocol level, rather than at the EMV protocol
level. With these insights, we propose a new relay-resistance
protocol (L1RP) for EMV. We use the Tamarin prover to model
mobile-phone payments with and without user authentication,
and in different payment modes. We formally verify solutions to
our attack suggested by Apple and Visa, and used by Samsung,
and we verify that our proposed protocol provides protection
from relay attacks.

I. INTRODUCTION

Contactless Europay, Mastercard, and Visa (EMV) pay-
ments are a fast and easy way to make payments and are
increasingly becoming a standard way to pay. However, if
payments can be made with no user input, this increases
the attack surface for adversaries and especially for relay
attackers, who can ferry messages between cards and readers
without the owner’s knowledge, enabling fraudulent payments.
Payments via smart-phone apps generally have to be confirmed
by a user via a fingerprint, PIN code, or Face ID. This makes
relay attacks less of a threat.

Apple Pay uses the EMV standard, however, for usability,
iOS 12.3 (May 2019) introduced the “Express Transit/Travel”
feature that allows Apple Pay to be used at a transport-ticketing
barrier station without unlocking the phone. In October 2019,
Samsung introduced the same feature. We refer to this feature
as “Transport mode”. We found that a non-standard sequence
of bytes is broadcast by Transport for London (TfL) ticket-gate
readers, and that these “magic bytes” bypass the Apple Pay
lock screen. Apple Pay then checks that its other requirements
are met (different for Visa and Mastercard) and if so it allows
a transaction to be performed with no user interaction.

For Apple Pay Visa we alter, replay and relay both ISO
14443 Level 11 messages, as well as EMV protocol Level 3
messages; with this, we are able to make a fraudulent payment

1In EMV terminology [1], Level 1 is the ISO 14443 protocol, Level 2 is
the exchange of bytes encoded as Application Protocol Data Units (APDUs),
and Level 3 corresponds to the EMV application protocol. We cover the ISO
14443 protocol in Appendix A and the EMV protocol in Section II-A. We do
not manipulate the APDUs and so they are not detailed further.

from a locked iPhone to any EMV shop reader (with non-
transit merchant codes), for any amount; we tested up to
£1000. For Mastercard, we found that relays from locked
phones were only possible to readers with a transit merchant
code. We formally model these protocols and verify the results,
using the Tamarin prover; we extend the state-of-the-art EMV
models from [2] to support mobile apps in different modes.

We disclosed this attack to both Apple and Visa, and
discussed it with their security teams. Apple suggested that
the best solution was for Visa to implement additional fraud
detection checks, explicitly checking Issuer Application Data
(IAD) and the Merchant Category Code (MCC). Meanwhile,
Visa observed that the issue only applied to Apple (i.e., not
Samsung Pay), so suggested that a fix should be made to
Apple Pay. We verify Apple’s and Visa’s possible solutions
in Tamarin and show that either would limit the impact of
relaying. At the time of writing neither side has implemented
a fix, so the Apple Pay Visa vulnerability remains live.

We found that Samsung Pay did not use “magic bytes”,
instead it was always possible to perform an EMV transac-
tion with a locked Samsung phone. However, we found that
locked Samsung-Pay would only allow a zero-value payment,
requiring the transport providers (currently only TfL) to have
an arrangement with their banks to charge for tickets based
on these zero value transactions. This makes it impossible to
relay Samsung Pay to shop readers to buy goods, but it is still
possible to relay Samsung Pay to other transport readers.

It seems unlikely that transport modes will be removed from
phones so, as relaying attacks are still possible, there is a need
for general EMV relay-countermeasures. Visa have proposed a
relay-countermeasure [3]; their protocol binds the ISO 14443
Level 1 data to the Level 3 protocol on the presumption
that (relay) attackers cannot easily tamper with Level 1 data.
This protocol has yet to be fully specified and implemented.
Mastercard specifications include a Relay Resistance Protocol
(RRP) [1]. This has been in the specifications since 2016, but
as far as we are aware it is not yet implemented in commercial
readers, or on customers’ cards. RRP operates at the EMV
application layer. In this protocol, the reader times a nonce
exchange with the card. If the time taken to communicate
with the card is within the bounds provided by the card, it is
likely that the card is close to the reader and no relay attack
is taking place. If the time taken is outside these bounds then
the nonce exchange is repeated. If three nonce exchanges fail,
then payment is rejected as a possible relay.

We show that the previously proposed relay-protection pro-
tocol from Visa can be defeated with standard hardware: the
Level 1 data they bind into Level 3 can be forged. The Level 1



data used comes only from the card, without involvement
from, or timing by, the reader. This leaves the protocol open
to Man-in-the-Middle (MitM) attacks. When contacted, Visa
stated that their proposal provides protection against off-the-
shelf smart phone relays. However, we show that a replay/relay
is possible with standard phones, if one of them is rooted.

To test the Mastercard RRP, we measured the timings of
responses coming from a test RRP-capable card, provided by
ICC Solutions, as well as a range of other payment cards.
We find that the distance of the card from the reader has a
noticeable effect on the response times for the card’s Level 3
messages, including the timed nonce-exchange on the RRP
card. The Level 1 messages, which require less processing,
show much shorter and more consistent response times. As
users will commonly place payment cards at a range of
distances and angles from the reader, it may be difficult for
the reader to tell the difference between a card at the optimum
position being relayed, and a legitimate card in the worst
position. In the case of our test RRP-capable card, we show
that this difference is enough to make a relay possible. While
other card implementations may have regular enough timing
to make a relay more difficult, relays are also becoming faster,
even with cheap off-the-shelf hardware [4]. Requiring the user
to place their card in a fixed position would mitigate this
problem, but it would not be a usable solution.

We propose the L1RP protocol that combines elements from
both Visa’s and Mastercard’s relay protections. We leverage
the timed nonce-exchange as proposed by Mastercard, yet we
move it to the ISO 14443 Level 1 part of the EMV protocol,
which –as we show– gives stable round trip time (RTT)
measurements. From Visa, we take the idea of tying together
data from Level 1 with the EMV application authentication.
By having a nonce-exchange and not just a one-directional
message as in Visa’s case, we solve the replay/relay issue with
Visa’s proposal. Our L1RP protocol satisfies the requirements
of the ISO 14443 specifications and can be made backwards
compatible, allowing both cards and readers to complete a
transaction with a legacy reader or card (i.e., one without our
relay protection).

We formally verify our L1RP protocol, and prove it se-
cure using Tamarin. For relay-security, we rely on a pre-
viously published method in [5]. Concretely, we show that
no downgrade attacks (to the EMV protocol without relay
protection) are possible, and that our design provides the relay
protection, as described in the threat model section below. We
also implement our protocol’s Level 1 nonce-exchange using
Proxmarks [6], providing some evidence that our protocol is
practical.

Novelty & Positioning: There have been a range of
attacks against contactless EMV (e.g., [7], [2], [8]). Most of
these attacks make use of a relay to alter messages going
between a card and a reader, i.e., the relay aspect of our
work is not new. However, we note that (1) None, of these
past attacks work against EMV payments from mobile devices
that require strong user-authentication, (2) None of these past
attacks would work if good relay-protection protocols were

in place, and we are the first to show that neither Visa, nor
Mastercard’s current relay-protection solutions are reliable.

Our work on mobile payments and transit modes adds im-
portant new insights to the field. For instance, Basin et. al. [2]
present an attack that bypasses the contactless-transaction limit
for Visa plastic cards by making it look like the card has
used user authentication (CDCVM) when the card is not even
capable of it, and they suggest changes to Visa’s protocol to fix
this. However, we show that the CDCVM status of a capable
device is recorded in the IAD field in Visa’s protocol, and this
field may be authenticated by the bank, so all Visa need to
do to stop this attack is to check this existing field in their
protocol. So, we delay discussion of related work until the
end of the paper, after we have presented our new findings.

The contributions of this paper are:
1) Explaining how Transit/Transport mode and the Issuer

Application Data work and are used in EMV.
2) Showing how to bypass the Apple Pay lock screen take

any amount of money from a Visa on an iPhone.
3) Showing that Visa’s Level 1-relay-protected protocol is

insecure against an attacker with rooted phones
4) Showing that EMV distance bounding can be done more

reliability at Level 1 than Level 3.
5) Proposing a Level 1 distance bounding protocol for EMV.

II. BACKGROUND

A. Overview of EMV

The EMV standard includes many different protocols, with
many variations. We present the versions of Mastercard’s Pay-
Pass and Visa’s PayWave that we observed in mobile phone
transaction traces. All of the annotated traces we collected can
be found in [9]. We summarise the most important acronyms
used by EMV in Appendix D.

1) Mastercard’s Protocol: The version of PayPass we
observed is shown in Fig 1. It runs after the Level 1 ISO
14443-3 anti-collision protocol; the relevant parts of the ISO
14443 protocol are described in Appendix A.

The card and the bank share a symmetric key KM , and
the card has a certificate chain for a public key, which the
reader can verify. The first two messages exchanged select the
payment application (i.e., Mastercard). Next, the reader sends a
Get Processing Options (GPO) message with terminal-specific
information, and the payment device answers with a list of the
records available on the card (the Application File Locator
(AFL)) and a list of the card’s capabilities (the Application
Interchange Profile (AIP)). The AIP indicates whether the
device is capable of user authentication, but does not indicate
whether user authentication has actually been used.

The reader will then request all of the records listed in
the AFL, which includes “Track 2” (the user’s account in-
formation) and the Card Risk Management Data Object List 1
(CDOL1), which lists all of the information the card needs to
complete the transaction. The information requested may vary
between cards; however, for mobile devices using Mastercard
this always includes the amount of the transaction, a unique
number/nonce from the reader (Unpredictable Number (UN))



and the MCC, which identifies the business associated with the
reader (e.g., 5732:electronics stores or 4111:local transport).

The proof of payment that the reader requires from the card
is a MAC on the transaction data, referred to as an Application
Cryptogram (AC). The reader now requests this AC with a
GEN AC command, which sends all of the data the card
requested in the CDOL.

The card will then generate a session key, KS , based on
the key it shares with the bank, KM , and its Application
Transaction Counter (ATC), which represents the total number
of times the card has been used. The card generates the AC as
a MAC of the CDOL1 data, ATC, and AIP, keyed with KS .

The reader cannot check this MAC as the key is known only
to the bank and card, so the card signs data for the reader to
check, the Signed Dynamic Application Data (SDAD), which
includes the CDOL1 data, the AC, the AIP (if present in the
Static Data Authentication Tag List), any records marked to
be included in data authentication and the UN.

The SDAD and the AC are sent by the card to the reader
along with the ATC, needed by the bank to calculate the
MAC key, a CID (which indicates the type of the AC) and
the IAD (which we discuss below). The reader checks the
SDAD signature and the data in the SDAD and, if this is
correct, it sends the AC, the AIP, CDOL1 data, ATC and IAD
to the bank/payment network, which will verify the AC. If it
is correct the bank will authorise the payment. The MCC is
also sent securely to the bank, by the terminal, as part of this
“authorisation request message”.

We note that there are many variations of this protocol,
e.g., the specification includes a card nonce, Nc, which is
included in the SDAD, however we did not see this in any of
our runs. The protocol presented here uses Combined DDA
with application cyptogram (CDA) mode, as specified in the
AIP; the specification allows for an “online” mode without a
SDAD, although we have not seen this for any of our tested
cards and readers, which are online and still use CDA.

Below, we present the Visa protocol, which is similar to
Mastercard’s protocol, but before doing so we include some
extra details common to both.

IAD: This hex-string follows the defined format set out
in the EMV standard, but the details are proprietary; see Visa
Contactless Payment Specification and Visa Mobile Contact-
less Payment Specification [10]. The IAD, in combination with
the transaction data, is used by the bank/payment networks
for anti-fraud checks. We discovered details of the IAD via
investigation of cards and our disclosure processes with Visa,
Apple and Mastercard, we give details in Section IV-C.

Cardholder Verification: EMV transactions with NFC
cards remain fully contactless as long as certain spending
limits are not reached: a limit per transaction (e.g., £45 in the
UK) and/or cumulative daily limits (e.g., C150 in the EU); if
either is reached, then normally the transaction would require
proof of “user presence”, i.e., a Cardholder Verification (CV)
mechanism is enforced.

The Cardholder Verification Method (CVM) list informs
the terminal of a set of rules for performing Cardholder

Reader Card

SELECT 2PAY.SYS.DDF01

FCI(AID-MC)

SELECT AID-MC

FCI(API),PDOL

GPO(PDOL-DATA)

AIP, AFL

READ RECORDs

CDOLs, Track2, CVM List, IAC, Certs

UN ∈R {0, 1}32, Check CVM
list, CDOL1-DATA=(amount,
amount other, country code, TVR,
currency, date, type, UN, terminal
type, data auth code, ICC no.,
CVM, TRM, MCC, MNL)

GEN AC (CDOL1-DATA)

KS = EncKM
(ATC)

AC = MACKs (CDOL1-DATA,AIP,
ATC,AID,IAD)
SDAD = Sign(CID,AC,CDOL1-
DATA,AIP,UN)

CID, ATC, SDAD(AC,AIP), IAD

Check certs, use these to check sig
on SDAD. CDCVM in IAD for high
amounts

Fig. 1. MasterCard’s PayPass from EMV standard & observed traces

Verification supported by the card, as well as the conditions
in which these rules apply. For plastic cards, this is generally
done by requesting that the card’s Personal Identification
Number (PIN) is input into the terminal (this PIN is sent
encrypted to the bank for verification). On mobile devices,
the CV can be done on the device, called Consumer Device
Cardholder Verification Method (CDCVM), i.e., the user’s
fingerprint is scanned by the mobile app. Importantly, this
allows the reader to accept contactless payments above the
normal contactless limit. We note that the AIP indicates if
CDCVM may be possible, not that it has been used.

“Tap-and-PIN”: The way of requesting the PIN can
differ from country to country (i.e., residing country of the ter-
minal, issuing country of the card and combinations thereof).
For instance, in the UK and Singapore, when using a UK-
issued card, an “over-the-limit” transaction asks for the card to
be inserted into the terminal and for the PIN to be used. Yet, in
Spain, France, Switzerland, Norway, and others, the card does
not need to be inserted in the terminal, but the user is asked
to type in the PIN (or confirm via a button). We refer to the
latter type of PIN-request as Tap & PIN mode. Investigating
Tap & PIN cards from Romania and non-Tap & PIN cards
from the UK, we found that non-Tap & PIN cards would stop
the transaction for any amount over the limit, whereas Tap &
PIN cards would continue, requesting the reader perform CV.

To the best of our knowledge, we are the first to point out
that there are two types of EMV cards, although some past



Reader Card

SELECT 2PAY.SYS.DDF01

FCI(AID-VISA)

SELECT VISA AID

PDOL, FCI(API)

UN ∈R {0, 1}32, PDOL-DATA=(TTQ,
amount, amount other, country, TVR, cur-
rency, date, type, UN)

GPO(PDOL-DATA)

KS = EncKM
(ATC)

AC = MACKs (PDOL-DATA,AIP,ATC,IAD)
SDAD = Sign(ATC, UN, amount, currency,
NC, CTQ, AIP)
Other = PAN Seq no., AC info,form factor

AIP, [AFL] IAD, AC, ATC,
CTQ, Track2, [SDAD], Other

〈 READ RECORD 〉

〈 ICC,TRID,PAR 〉

[ READ RECORDs ]

[ Certs, PAN, CARD(NC ) ]

Fig. 2. Visa’s PayWave protocol. Brackets indicate optional messages.

authors have presented attacks that only work against Tap &
PIN cards [2], [7] and others have presented attacks that only
work against non-Tap & PIN cards [11].

2) Visa’s Protocol: The version of Visa’s protocol, as per
the standard and validated by our traces, is shown in Fig 2.
Unlike Mastercard, the list of data needed for the transaction
(e.g. amount, UN, etc.) is returned in answer to the second
SELECT message. The function of the GEN AC and the GPO
messages in the Mastercard protocol is merged into the GPO
message in Visa’s protocol. Checks on the SDAD and AC
remain the same. While the MCC is not sent to the card, it
is sent securely from the reader to the bank and payment-
networks (i.e., Visa), for anti-fraud checks and fees [12].

The type of Cardholder Verification supported or performed
is signalled through a number of different EMV data elements
throughout the transaction, in particular a mobile Visa trans-
action uses the Terminal Transaction Qualifiers (TTQ), Card
Transaction Qualifiers (CTQ) and AIP.

The Terminal Transaction Qualifiers (TTQ) inform the card
of the online and CVM options that the terminal supports;
of relevance are the bits flagging support of “EMV Mode”
(byte 1 bit 6), “offline data authentication for online trans-
actions” (byte 1 bit 1) and “CVM required” (byte 2 bit 7).
Offline data authentication for online transactions is a feature
used in special-purpose readers, such as transit system entry
gates [13], where EMV readers may have intermittent con-
nectivity and online processing of a transaction cannot always
take place. In such cases, offline verification is performed and
the payment is processed once the terminal is back online.

The Card Transaction Qualifiers (CTQ) are a set of options

which determine what type of CV can/should be performed at
the point of sale. The allowed options are decided by the bank
issuing the card and are programmed at the time of issuance.
The “CDCVM performed” bit (byte 2 bit 5) is of interest – it
tells the terminal that on-device CV has been performed.

Unlike for Mastercard, we saw both online and offline mode
in the Visa traces. If the “offline data authentication for online
transactions” flag was set by the reader then the card would
report extra records in the AFL field and would send the
SDAD; the fields in square brackets in Fig 2. For Visa, the
mobile devices we tested used tokenization [14] to obscure the
account details (done by the read record in angle brackets in
Fig 2), whereas plastic cards do not do this.

B. Over the Limit Attacks Against Tap & PIN cards

Two attacks have demonstrated how user authentication can
be bypassed for high-value transactions with Tap & PIN cards.
Galloway and Yunusov [7] show that, for high-value Visa
transactions, a MitM attacker clearing the TTQ bit, which
requests user authentication, leads to a high-value transaction
being accepted without a request for the PIN. This shows that
the TTQ used by the card is not being authenticated by the
reader or EMV back-end.

Basin et. al. [2] present an attack against contactless Visa
plastic cards, in which a MitM attacker flips CTQ bits, making
the terminal believe that CDCVM was performed on the device
when in fact it wasn’t. This too leads to a high-value Visa
transaction being accepted without the reader asking for a PIN.
The authors of [2] state that their attack is “possible because
no cryptographic protection of the CTQ is offered”. While the
lack of CTQ authentication is true, this is not the root cause.
We show in sub-section IV-C that the IAD generated by the
plastic card in their attack would have a Visa “plastic-IAD”
format [10] which, if checked by the payment network, would
reveal that the device is not capable of CDCVM authentication,
and so the transaction should be rejected. Therefore, the attack
of Basin et. al. [2] is due to missing checks at the EMV back-
end rather than a flaw in Visa’s protocol.

We observed some discrepancies regarding how the TTQ-
AC relationship is presented in the above mentioned attacks.
Galloway [7] claims that for Visa cards, the AC does not
contain the TTQ, based on information from the Visa Con-
tactless Payment Specification [15], which is a proprietary
specification. Basin et. al. [2] claim that the TTQ is in the
AC, based on EMV Book 2 [16], and explain that this is
why their formal model does not identify the Galloway attack.
EMV Book 2 states that it is recommended that the whole
Processing Options Data Object List (PDOL) be included in
the AC (which would include the TTQ in this case), but the
minimum set of data elements they specify does not include
the TTQ. Therefore, whether the TTQ is included in the AC
or not (and if the attack of Galloway [7] is due to missing
back-end checks or a flaw in the protocol) is unclear.



Reader Card

. . .

. . .

EXCHANGE RELAY RESISTANCE DATA (UN )

timed NC , Timing information

READ RECORDs

. . .

SDAD, AC, ATC

Fig. 3. Mastercard’s PayPass-RRP Protocol – PayPass with ERRD

C. Visa Relay Protection Protocol

Visa proposes a relay-counteraction measure [3], [17],
which we call the VISA-L1 protocol. This protocol is based
on two ideas. First, it requires the card to use a random 4-byte
Unique Identifier (UID) in each run of the protocol (random
UIDs are common in RFID devices). This means that the UID
now functions as a nonce, and is referred to by Visa as the
L1SessionParameter. This is sent by a card to the reader
as part of the Level 1 anti-collision process (see Appendix A).
The L1SessionParameter is then tied into the Level 3
of Visa’s PayWave protocol. While Visa’s patent and current
documents do not specify how the Level 1-to-Level 3 binding
must be done, we understand from conversations with Visa
that the “EMVCo NextGen” specification will specify that the
L1SessionParameter be added to the SDAD, alongside
the normal Level 3 EMV data that the SDAD contains. If the
UID received at Level 1 and Level 3 do not match then the
transaction is rejected as a possible relay.

Visa’s Relay-Security: In the specification documents [3],
[17], the security argument relies on the difficulty of setting the
UID to a particular value, especially with off-the-shelf devices
such as mobile phones. Thus, a proxy card used in relaying
to impersonate the real card would fail to produce the right
messages to the legitimate reader.

Through our conversations with Visa Research, there is
another implicit security argument, common in the RFID field:
relaying at Level 1 is harder than at Level 3, because ISO
14443-4 framing is more restrictive than at the EMV level.
So, relay protections may be more effective at Level 1 than
Level 3. However, we note that if the attacker can set the UID
of the proxy to equal the UID of the card, then Visa’s defences
will no longer work , because there is no dynamic/fresh reply
by the reader based on said UID and there is no distance
bounding used in the VISA-L1 protocol.

D. Mastercard Relay Protection Protocol

Mastercard’s PayPass-RRP (shown in Fig. 3 and described
in EMV Book-C2 [1], Sections 3.10, 5.3 and 6.6) is a direct
extension of the PayPass protocol, in which a timed nonce-
exchange at Level 3 is used in order to detect relay attacks.
PayPass cards indicate they support the protocol with a AIP
of 1981; a PayPass-RRP reader then sends an Exchange
Relay Resistance Data (ERRD) command that contains the
“Terminal Relay Resistance Entropy”. This is the same reader-
generated UN nonce sent in PayPass inside the GEN AC.
The ERRD response contains (1) the nonce returned by

the card and denoted in Fig. 3 as NC , (2) three timing
estimates from the card, denoted in Fig. 3 as timing info, i.e.,
the minimum and maximum expected time for the card to
process the ERRD command and an estimate of the round trip
time (RTT). All these values are signed in the Signed Static
Application Data (SSAD), which the reader should check.

If the message RTT is smaller than the maximum listed
in the timing data, then the ERRD phase finishes and the
protocol continues. If the RTT is larger than the maximum
time three times in a row, then the reader stops the transaction
as a suspected relay attack. If a terminal has done a PayPass-
RRP check and it passed, then the TVR should be set to
0000000002. We will use “RRP” for the whole payment
protocol by Mastercard (PayPass-RRP).

III. THREAT MODEL

Our threat model is that of an active Man-in-the-Middle
(MitM) adversary, who can also relay. The attacker operates in
an environment where: (1) the banks/issuers/payment networks
are honest; (2) the EMV terminals are honest; (3) cards can
be compromised, except for the card that the attacker is trying
to relay in the current attack (i.e., we do not consider attacks
such as distance fraud or terrorist fraud).

Formal-Verification Adversary: Our attacker is modelled
as a Dolev-Yao attacker [18] allowing for corrupt cards and
an unbounded number of sessions. For proximity-checking, we
follow the state of the art formalism of Mauw et. al. [5], where
distance and timing are safely abstracted into event-ordering
on traces, and we are only interested in MitM-security (i.e.,
not distance fraud or terrorist fraud).

Practical Adversary: Our practical attackers use, for
relaying or other MitM manipulations, Commercial Off The
Shelf (COTS) equipment, i.e., commercial, relatively non-
expensive, easy-to-use hardware or software such as mobile
phones (rooted or not). More specifically, our practical attacks
do not rely on extensively modifying firmware on hardware or
building new hardware (for relaying or other MitM attacks),
and our practical adversaries stop at application-level devel-
opment/manipulation on COTS devices. This is the same type
of attacker that Mastercard and Visa aim to stop with their
proposals. No current proposal for relay protection for con-
tactless EMV aims to stop specialist, expert-built relay/MitM
equipment (e.g., [19]).

There are fast and effective, purposely built hardware-based
relays in other domains such as remote car-unlocking [19], as
well as solutions [20] designed specifically for the physical-
layer (e.g., bespoke modulation schemes) to combat such
efficient, hardware-based attacks. Our threat model does not
include hardware-based EMV relays that operate at Level-
1 (or the physical-layer) and such relays might be able to
compromise our proposed solution. In fact, in Section VI, we
give certain timing measurements for an implementation of our
L1RP protocol, mention the bottlenecks observed, and leave as
an open question the possibility of successful hardware-based
relays against current contactless EMV technologies.



IV. MOBILE-PAYMENTS VIA TRANSPORT MODE

This section presents our results from experimenting with
Apple Pay Express Transit (known as Express Travel in
Europe) and Samsung Pay “Transport card”. We refer to these
two systems as “Transport mode”. The transport mode on these
phones is a convenience feature, which allows a user to pay on
certain transport networks without prior authentication to the
device (fingerprint, face ID or passcode), by simply tapping
the phone on the EMV reader of the transport network.

Apple Pay’s transport mode is available in London (TfL),
New York City, Portland, Chicago, Los Angeles, Washington,
Beijing, Shanghai, Hong Kong and Japan [21]. Samsung
Pay’s transport mode is only advertised to work in London
(TfL) [22]. Google Pay allows, by design, for certain small-
value transactions without user authentication2 and does not
have a dedicated transport mode.

A. Setup and Data Collection

Hardware: As target devices we had two Apple products
(an iPhone 7 and an iPhone 12, running iOS 14.4.2 and two
Samsung products (a Samsung Galaxy S9 Edge and S10
running Android 11. We tested our findings on a number of
commercially available EMV terminals: iZettle v1, SumUp,
and SquareUp readers.

Preparation Stage: We collected transport mode trans-
action traces between a locked phone and TfL ticket gate
readers at Clapham South, Clapham Common, Balham and
Epson London Underground stations. For this we used a Prox-
mark RDV4 fitted with the high frequency antenna, running
standard firmware3. The Proxmark was chosen both due to
its versatility and excellent ISO 14443-A support, as well as
its small form factor, which meant we could carry out the
sniffing experiments without drawing too much attention. The
Proxmark was connected via USB to a Linux laptop in order
to issue the sniffing commands.

Analysing the sniffed traces, we noticed that an extra, static
15-byte message is sent before the ISO 14443-3 Wake-UP
command, Type A (WUPA) [23], which we refer to as the
Magic Bytes.

B. Visa Apple Pay Express Transit Replay & Relay Attack

We found that by replaying the Magic Bytes to an iPhone,
Apple Pay would unlock and allow us to start a transaction
for both Mastercard and Visa, even if no authentication (PIN,
FaceID or TouchID) has taken place. However neither would
initially let us then complete an EMV transaction.

By examining the Visa traces we found that in order to
continue with the transaction in transit mode, we have to make
sure the TTQ, contained in the GPO, has the Offline Data
Authentication (ODA) for Online Authorizations supported bit
set (byte 1 bit 1) as well as the EMV mode supported bit set
(byte 1 bit 6). The former flag indicates to the device that the
reader may be offline, but that the device should use online
mode anyway.

2https://support.google.com/pay/answer/7644132
3https://github.com/RfidResearchGroup/proxmark3

By setting these flags in a relay we found we could relay
transactions between a locked iPhone and any of our shop
readers, therefore, allowing the attacker to wirelessly pick
pocket money from the iPhone’s owner. The attack may also
be used to extract money from a stolen, locked iPhone. We
note that it would be possible for Visa to try to authenticate
the TTQ and so limit the attack to just shop readers that have
the Online/Offline mode flag set, however, as shown by [7],
Visa do not authenticate this field.

Attack Details: This vulnerability has a Severity Score
of 7.1 and a High Severity rating (based on the Common
Vulnerability Scoring System v3.1 [24], [25]).

For carrying out the attack, we used a Proxmark RDV4, with
small modifications to the device firmware (details to follow)
which acted as a reader emulator, the EMV readers mentioned
above and an NFC enabled Android device which acted as a
card emulator (Nokia 6 TA-1033, running Android 9 Pie, in
our case). A device to run the relay server was also needed;
for our experiments we used the same laptop as above.

To carry out the attack a Proxmark acts as a terminal
emulator, and it is connected to a laptop via USB. The Nokia
phone acts as a card emulator, using the CardEmulator app
from [26], and communicates with the laptop via some net-
work (cellular or WiFi). We modified the Proxmark firmware
such that, when emulating an ISO 14443 type A reader, it
would first send the Magic Bytes, wait 8ms for the iPhone to
process the message, then send the WUPA command. The rest
of the ISO 14443 protocol is run according to the standard,
after which the EMV protocol can begin. This step only
involves the iPhone and the Proxmark, and no messages are
relayed in this part of the attack.

The relay server runs a Python script which handles
the communication with the Proxmark, via the pm3 client,
and the communication with the CardEmulator via a
socket. It relays the messages between the Proxmark and the
CardEmulator, and can modify them in-flight, as needed.

Once the iPhone is in the ACTIVE state (as described in
ISO 14443-3), we can start the interaction between the card
emulator and reader. They will complete the standard ISO
14443 activation protocol.

The EMV protocol then starts, and the messages are relayed
between the EMV reader and the iPhone. A diagram of the
relay can be seen in Fig. 4. At the point in which the reader
provides the transaction information, as part of the GPO
message, in order to continue with the transaction, we set the
Offline Data Authentication (ODA) for Online Authorizations
supported bit (byte 1 bit 1), as well as the EMV mode
supported bit (byte 1 bit 6) in the TTQ – we denote the
modified message as GPO’ in our diagram. The EMV protocol
continues as normal. We would like to highlight that as part of
the answer to the last READ RECORD command the phone
sends, among other details, the Card Authentication Related
Data (CARD), which contains the card nonce (Nc) and a copy
of the CTQ. Once the last reply is received by the reader, the
transaction is successfully completed - the iPhone shows a tick
and displays ‘Done’ in the user interface (UI), and issues its

https://support.google.com/pay/answer/7644132
https://github.com/RfidResearchGroup/proxmark3
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Fig. 4. Communications diagram for the Apple Pay Express Transit attack

trademark sound, and the reader shows the payment has been
received.

If the attacker can interact or eavesdrop the iPhone before
the attack then the READ RECORD commands can also be
cached, in which case the Proxmark no longer needs to relay
the requests for these to the iPhone. The replies can be cached
on the relay server or, ideally, on the device acting as the card
emulator. If the replies are cached the UI does not show the
transaction as completed; instead, it displays ‘Try Again’ and
a red exclamation mark. There is also no audio cue. However,
the reader shows the payment has been successful, and the
transaction can be confirmed by unlocking the iPhone and
checking the Apple Pay transaction history.

The reader is running in online mode and is not expecting
the SDAD from the iPhone, which is only sent because we
flipped a bit in the TTQ, i.e., the iPhone is running in DDA
mode and the reader is running in EMV mode. We could
remove the SDAD from the DDA message to make it look like
a EMV message, however we found that, if sent, the reader
will just ignore the SDAD and does not check it.

Relay Success Rate: The full relay has a success rate
of approx 40% (8 out of 20 trials). This success rate is
achieved by a slight modification in the attack flow, whereby
when the first READ RECORD command is issued, we
continue the phone-side only messages exchange with the two
subsequent read commands. We then relay them to the reader,
as it requests them (as opposed to forwarding each READ
RECORD command when received from the reader). We point
out that the success rate is not due to any Apple protection
mechanism, but due to the timing of relaying the messages,
and for the cached READ RECORD variant, the success rate
is 100%.

Over the CVM Limit Payments Escalation: The above
described attack works for transactions under the contactless

payment limit. We were able to escalate this attack to work for
any amount. We could bypass the contactless limit by setting
the CDCVM performed bit in the CTQ (bit 8 in byte 2), as well
as setting the same bit in the CTQ copy of the CARD field.
We successfully tested this with amounts up to £1000. The
code for the proof of concept is open sourced and available
in [9] along with a video of the attack being performed.

Disclaimer: For ethical reasons, we used our own per-
sonal cards while carrying out this research and we do not
publish the value of the Magic Bytes.

Mastercard: We have also investigated whether this at-
tack works when using a Mastercard with Apple Pay Express
Transit. In order to complete a transport transaction, we found
that the Merchant Category Code (MCC), which the EMV
reader sends, needs to map to transportation services [27];
we confirmed it works with MCC 4111 (local commuter
transport) or 4131 (bus lines). However, the MCC is authenti-
cated in the Mastercard protocol (it is included in the SDAD),
and therefore this modification is detected and the transaction
rejected. This check on the MCC is the reason why we cannot
relay Mastercard transactions from a locked iPhone to a shop
reader, although relays to other transit readers are possible.

C. Investigation of Mode-Change in Samsung Pay

We investigated Samsung Pay Transport Card, the equiva-
lent of Apple Pay Express Transit, on a Samsung Galaxy S9
Edge and Galaxy S10, running Android 11, with all updates
applied. We found that the transaction logic of the Samsung
phone differs from the iPhone; when it comes to choosing
whether a transaction should be executed via its transport
mode or through the normal mode. The Samsung phone did
not require the presence of the Magic Bytes to respond to
EMV commands. Samsung’s solution relies on one of the
suggested mitigations we had for Apple: small/zero value
payments. If the transaction value is 0, the phone considers
this to be a transaction with the public transport infrastructure
and executes it through the transport card (no authentication
required). A larger amount is considered to be a normal
transaction, and requires authentication. If the fingerprint (or
Samsung Pay PIN) is not provided beforehand, the phone
replies with a message to signal that the conditions of use
have not been satisfied and stops the transaction.

We could activate the Samsung Transport card by replaying
a TfL trace to it. However, when trying to relay a non-
zero value transaction between a real EMV reader and the
phone, the transaction was always cancelled by the phone,
and a message that authentication to the device is required
was displayed. Changing the amount of the transaction while
relaying (in the same way we changed the TTQ when relaying
the iPhone) resulted in the transaction reaching the end of the
protocol on the phone, but being declined by the EMV reader.

As it is clear that the transaction is cancelled by the phone
if any non-zero value is present in the authorised amount field
of the GPO message (which is used for purchases), we also
experimented whether the same occurs for the other amount
field, which is used for cashback. Here we found that we could



complete a transaction with a locked Samsung phone (and
therefore had an AC generated) with some value in the other
amount field, as long as the authorised amount value was zero.

Plans have been announced to allow cashback without
a purchase on contactless cards4 transactions from locked
Samsung phones. Unfortunately, we were unable to acquire
readers that support the cashback functionality, in order to
test this. We hope to be able to try this attack in future.

D. Investigating the IAD

To find out how CDCVM was authenticated we carried out
a byte-by-byte comparison of mobile device transactions with
and without CDCVM (transport mode). Looking at Mastercard
we found that the only differences were in the UN, AC,
SDAD, and the IAD. The AIP was the same whether CDCVM
was used or not, always indicating that the device supports
CDCVM, i.e., the AIP does not indicate that device has
performed user authentication. We would expect the UN, AC
and SDAD to be different for each run because they are
designed to be fresh values, therefore this suggests that the
IAD indicates if CDCVM was successfully performed on the
device.

We tried a MitM attack that inserted the IAD from a
user authenticated transaction into a transaction with no user
authentication and the transaction was rejected, indicating that
the IAD is authenticated. Mastercard later confirmed to us that
the IAD is included in the AC and this is checked.

For Visa plastic cards, we found that there are multiple
IAD formats used. We saw in our transactions IADs with
“Format 0/1/3”, for example: 065C0A03A00000. The general
description of an IAD is defined in EMV Book 3 [28]. Bytes
5-7 of the IAD are the Card Verification Results (CVR), which
indicate whether a second GEN AC was issued, and the type
of AC returned, among other things.

On mobile devices we saw 32 byte IADs starting:
Apple (CDCVM) : 1F4A5732A0000000001003...
Apple (transport) : 1F4A5760A0000000001003...

Google Pay (CDCVM) : 1F434651200000000000000...
Samsung (transport) : 1F436300200000000000000...
Samsung (CDCVM) : 1F434642200000000000000...

While the format of these longer IADs is not public, we
see that the first byte of the CVR, highlighted in red, always
reflects whether or not CDCVM was used, therefore indicating
to the EMV back-end if CDCVM was used on the device.
During the disclosure process Visa confirmed this, and that
these bytes were in the AC, but that Visa does not check them.

In summary, Mastercard use the IAD to authenticate the
use of CDCVM. From the IAD, Visa could determine if the
transaction was with a device capable of performing CDCVM,
and if CDCVM was used, and these could be authenticated
against the value in the AC, however this check is not currently
performed. If this check was performed then the Visa over the
limit attack against the iPhone would not be possible.

4https://www.moneysavingexpert.com/news/2020/10/
shoppers-to-be-able-to-get-cashback-without-buying-anything-unde

E. Responsible Disclosure

The details of this vulnerability have been discussed with
Apple and Visa. In a meeting with the Apple Pay security
team, they stated that they believed that this was a serious
security issue, but they believe Visa would be responsible
for allowing this IAD-unchecked transaction to go through.
Explicitly, they stated that Visa should identify iPhone transac-
tions, check the CDCVM status in the IAD, and that iPhone
transactions without CDCVM should only be allowed when
the MCC code indicated transit payment.

We suggested restricting transactions to low or zero value,
when Apple Pay is unlocked with the Magic Bytes. Zero value
is in line with the operations/transactions needed by TfL,
which calculates the correct amount to charge travellers at the
end of the day based on all their trips, but Apple stated that
they support transit systems that require non-zero payments,
so they do not want to put any bound on the payment value in
transport mode. Apple did not pay a bug bounty, even though
they advertise $100,000 for bypassing a lock screen, and our
attack bypasses the Apple Pay lock screen.

We have also discussed this attack with Visa, who pointed
out that this attack only affected Apple Pay, and suggested
Apple were best placed to fix the issues. Visa also stated
that back-end anti-fraud checks weregenerally applied, when
needed. So, if this attack was to raise fraud-alerts, they claim,
it would be eventually stopped. That said, we performed our
attack multiple times, on large values, from the same card,
and we were never blocked and flagged for fraud. Until either
Apple or Visa implement a fix, we recommend that iPhone
owners disable transit mode for Visa cards.

F. Comparison with Existing Attacks Over the Limit Attacks

The attack presented by Galloway [7] is used to perform
over the CVM limit transactions without Cardholder Verifica-
tion on plastic cards and involves clearing the CVM bit in the
TTQ – i.e. the reader will believe that no CDCVM is required.
For over the limit transactions on Apple Pay Express Transit,
only clearing the CVM bit in the TTQ (without the CTQ flips)
results in the transaction failing on the reader side, i.e., this
attack does not work against Apple Pay.

The attack presented by Basin et. al. [2] is a different
approach to achieving over the CVM limit transactions without
requiring Cardholder Verification, on plastic cards. It involves
clearing the online PIN verification required bit and setting the
CDCVM performed bit in the CTQ – i.e. tricking the EMV
reader into believing the card has performed CDCVM. Our
Apple Pay Express Transit CVM limit escalation also targets
the CTQ. However, the online PIN verification bit is not set
in our case. We target the CDCVM bit in CTQ in two places:
it first appears in the response to the GPO message (under
tag 9F6C), and in a record template, as part of the CARD
(tag 9F69). The CDCVM bit needs to be set in both of these
EMV tags, otherwise the transaction is not successful.

As a side-note, we confirm the Galloway attack still
works against Google Pay (Pixel 5), two years after being
publicised [7]. We found that the Basin et. al. attack did

https://www.moneysavingexpert.com/news/2020/10/shoppers-to-be-able-to-get-cashback-without-buying-anything-unde
https://www.moneysavingexpert.com/news/2020/10/shoppers-to-be-able-to-get-cashback-without-buying-anything-unde


not work against Google Pay: the combination of over the
limit transaction amount and set CVM bit in TTQ results
in the phone terminating the transaction after it receives
the GPO message, with the code 6986 (Command not
allowed), and therefore the CTQ is never sent. We conclude
that Google detects and rejects any Visa transaction that
requests authentication in the TTQ unless the phone has been
unlocked. Unfortunately Apple Pay does not have this defence.

G. Formal Verification
To analyse these protocols we use the Tamarin prover [18].

This is a verification tool that supports symbolic/Dolev-Yao
analysis [29], [30]. Tamarin models are transition systems over
a multi-sorted term algebra, operating on the semantics of
multiset rewriting logic [31]. Security properties can expressed
as lemmas about the labels on the rewrite rules. Tamarin can
then automatically either prove that a security proprieties holds
or provide a counter example, i.e., find an attack.

1) Verifying Visa in Apple & Samsung Pay: We use formal
verification to show that our attack is exhibited on the
EMV specification of Visa used inside an Apple Pay app but
not inside the Samsung Pay app. We show, formally, that
the countermeasures proposed to Apple and Visa stop the
attack. Finally, we show that our attack cannot be completely
counteracted by any/all of the countermeasures, i.e., that it is
still possible to relay to terminals that share the same MCC.

We endeavoured to create this model to account for a
modular treatment of the countermeasures we discussed, e.g.,
Apple and Samsung Pay differing only in the answers to
GPO commands based on value inside this message, etc. The
Tamarin file can be found in Mobile Visa.spthy in [9].

Tamarin Model for Mobile Visa: We used as starting
point the Tamarin models for contactless Visa “plastic cards”
by Basin et. al. [2]. Unlike Basin et. al., we have one single
model which contains: (a) both EMV transaction-authorisation
modes (“DDA” – with SDAD, used in mobile transport mode,
and “EMV” – no SDAD, used in non-transport mobile);
(b) transaction-values above and below the limit (“high” vs
“low”). Most of our Tamarin rules for card, terminal and bank
are similar to the one in Basin et. al., but other extensions/-
modifications are necessary as we explain in the following.

Terminals. A “Create_Terminal” rule generically
creates our terminals as follows. A terminal can be a
“transport” vs “non-transport” terminal, and if it is the
former it sends the “magic bytes” we observed TfL
to send. Terminals can send “zero”, “low” and “high”
values. Terminals have an MCC value, which in the
model is as broad as “transport”/“non-transport” MCCs. To
encode the Apple Pay business model, our protocol rules
indeed allow transport terminals to send any value (see
Terminal_Sends_GPO_AnyValue_AnyMode_Visa
rule). In this rule, we impose however a realistic restriction
that non-transport terminals cannot accept zero values (i.e., see
_restrict(NonTransportNonZero(mode,value)).

Cards/Mobile Apps. We create rules for cards/apps as
generically and modularly as possible, with the same

transition-rule applying to both behaviours wherever possible.
Before the app actually responds to the GPO, we have a
ComputeCVR rule firing that implements the mobile-app
logic of judging if CDCVM is needed based on the “magic
bytes” being received or not (i.e., perceived app operation
mode) and value (high/low) sent in the GPO command.

We have two GPO-responding rules separated by the
Handset(’samsung’) vs Handset(’apple’) and
otherwise the facts produced by this ComputeCVR rule; these
two GPO-responding rules are the only way we differentiate
between Samsung and Apple Pay w.r.t. EMV-card behaviour;
i.e., in the case of Samsung, we impose a restriction
_restrict(ZeroOnly_in_nonAuthen_Transport
(CDCVM_noCDCVM, perceivedAppMode, value))
to allow only zero payments when in the ComputeCVR rule
it judged it is in transport mode.

Unlike the Basin et. al. model, in the GPO-responding rule,
the cards create a more detailed IAD. Concretely, e.g., in the
Basin et. al. model, the IAD for Visa EMV mode was IAD =
<’IAD’, CID>; ours is IAD=<’IADmobile’, CID,
CVR, format>, and this additionally denotes that the CVR
(denoting if CDCVM was performed is included in the IAD),
and “format” specified if the card believes it is operated in
transport or non-transport mode. This is entirely in line with
Visa IAD formats for mobiles. Also, in our model, we add
that the MCC of the terminal is finally sent to the issuing
bank along with the whole transaction on a secure channel.

The Bank. We implement three transaction-processing rules,
accounting for the different possible behaviours: (case1) as in
the models by Basin et. al., in this case the bank does not
check the CVR and format values inside the IAD, (case2) the
bank does check the CVR and format values inside the IAD,
but does not cross-check these against the MCC; (case3) the
bank checks all of the IAD, MCC and transaction data.

Verification. In the model, we add numerous sanity-check
lemmas to show that all and only faithful behaviours w.r.t.
to Apple/Samsung, transport/non-transport, and values are
present. We then prove/disprove the following lemmas: respec-
tively meaning:

1) the Apple-Pay attack is found:
a) via falsifying the “all-traces” payment-security

lemma1.a, for “case1” of the bank-checks above,
where the bank does not check the IAD;

b) via proving an “exist-trace” lemma1.b
2) Samsung Pay does not suffer from the mode-

abusing payment attack (via proving an “all-traces”
payment-security lemma2, quantifying over traces of
Handset(’samsung’))

3) either of our two countermeasures stops the Apple attack:
i.e., the bank checking the CVR (lemma3), and the bank
checking the MCC against the IAD-format (lemma4).

4) it is still possible to relay a transaction from a transport
terminal to another transport terminal, if they share the
same MCC (lemma5)

Note. Checking the format of the IAD (i.e., case2



above) is enough to stop the “CTQ-change”, “Tap &
PIN” attack in [2]. This is shown indirectly by our
lemma3 above. We also show this for the original model
Visa EMV High.spthy from [2]. I.e., the authentication for
the bank (i.e., lemma auth_to_bank_minimal) holds
if the IAD format is checked. In the GPO-processing rule,
the TTQ info received by the card now dictates the IAD
format, and in the rules relating to the bank processing the
CVM (for the case of online/not-online PIN) we added IAD
format checking (see lines 425, 749 of the amended file
Visa EMV High BasinEtAl.spthy in [9]).

2) Verifying Mastercard in Apple & Samsung Pay: We use
Tamarin to verify that no similar attack is possible against ex-
press transit mode for Mastercard on Apple Pay. The Tamarin
file can be found in Mobile Mastercard.spthy in [9].

We detail slightly less in this case, building on the previous
section. Like for Visa, we base our model of Mastercard on
the work of Basin et. al. [2], to this model we add a) the
more detailed IAD that encodes if the device used the user
authentication (CDCVM) or not, b) that devices may indicate
in the AIP that the device supports CDCVM but that a device
might not use it, c) we add the Merchant Category Code
(MCC). Our experiments and conversations with Mastercard’s
security team indicate that (unlike Visa) all of these values are
actually checked. We also make some simplifications to the
model in [2]: i.e., we only model Mastercard with a SDAD,
as we have not seen any support for transactions without this
across any of our devices or readers. Unlike for the Visa model,
we only consider two payment amounts, a low and a high
value. For Apple Pay Express Transit, we add that devices
may function without the device authentication if the “magic-
bytes” action is present in the trace and if the MCC code
indicates that the terminal is a transport reader.

Using Tamarin we are able to prove that: for uncompro-
mised Mastercard Apple Pay devices, if the bank accepts
a high transaction amount then the device must have used
CDCVM user authentication and we can further show that
this is based on Mastercard checking the IAD, indicating that
this is an important part of Mastercard’s protocol.

To show that the Visa Apple Pay attack is not possible
against Mastercard, we show that the bank will only accept
a non-CDCVM transaction from a terminal with a transport
MCC code. This means that relay attacks using transit express
mode are limited to only relaying to other transit terminals.

V. VISA’S LEVEL 1-RELAY PROTECTION

As stated in their attacker model, Visa’s solution relies on
the inability of the attacker to change the UID of a card or mo-
bile phone, which they refer to as L1SessionParameter,
and the difficulty of relaying the Level 1 messages due to
their timing constraints. However, setting a desired UID on
some mobile devices is possible [32], if the device is rooted.
This has been introduced in Android 4.4, as host-based card
emulation, and allows an app to emulate a card (or NFC
tag) and talk directly to a NFC reader [33]. While this is a
departure from Visa’s attacker model, rooting a phone is not

a complicated task in 2021, with plenty of resources available
and tools which take care of the more “technical” steps of
the process. We have tested a rooted Nexus 5 phone, which
has the Broadcom BCM20793M NFC controller, running its
stock firmware (Android 4.4) and running CyanogenMod 14.1
(Android 7.1.1). On both versions we were able to successfully
set any UID we wanted by editing the NFC configuration file.

By building on the work of [26], we modified their Android
relay apps to add an extra step before any EMV messages
were exchanged. We ran the CardEmulator app on the
Nexus 5 phone and used a Nokia 6 phone to run the
TerminalEmulator app. A server forwards data between
the apps (no change to the original from [26]).

On the TerminalEmulator app we added extra func-
tionality which allows us to retrieve the UID of the card
the phone is in contact with. This is done through retriev-
ing the ID of the Tag object that was discovered by the
ACTION_TECH_DISCOVERED intent, and sending it to the
server, which will then forward it to the CardEmulator app.

In the CardEmulator app we receive the UID and set it
as the phone’s UID by:

• Remounting the system partition with read and write
permissions;

• Replacing the NFA_DM_START_UP_CFG parameter in
the /etc/libnfc-brcm-20791b05.conf configu-
ration file such that it includes the UID:
– we add 6 to the first byte of the config parameter, which

holds the length of NFA_DM_START_UP_CFG, as we
will be adding 6 more bytes;

– at the end of NFA_DM_START_UP_CFG, we add the
NCI parameter LA_NFCID1 (0x33), which means the
UID is declared in this configuration parameter, the
length of the UID (0x04), and the UID itself;

• Restarting the NFC service.

The complete set of steps for setting the UID on the phone
takes approximately 181ms. After this, the EMV level relay
can proceed as normal. We confirmed with a Proxmark that
the UID of the Nexus phone was equal to the UID of the
relayed card. Fig. 12 in Appendix B presents the overview
of the communication between all the devices involved. Our
modified apps are available in [9].

With this attack we can break Visa’s relay protection
protocol. When the L1SessionParameter is sent signed
as part of the EMV protocol, the EMV reader will decrypt
it, and it will match the UID of the phone. We can achieve
this both because we can set a phone’s UID as desired and
because, although there is an overall timeout for the transaction
(the EMV specification says 500 ms [34]) there is no round-
trip timing measurement within Visa’s protocol, which means
the card may wait in the PROTOCOL state (before the EMV
protocol starts), for the SELECT 2PAY.SYS.DDF01 message
from the EMV reader, as the transaction timing is enforced
by the EMV reader with which we start interacting after the
UID change has happened.



VI. LEVEL 1 AND LEVEL 3 TIMING IN EMV

We experimented with the reliability of timing at Level 1
and Level 3, and therefore the feasibility of relaying at
these two levels. We experimented with several commercial
EMV cards (Visa and Mastercard), as well as aprototype,
test prototype PayPass-RRP card, bought from a vendor
called ICC Solutions. We found no commercial/bank-issued
PayPass-RRP cards.

We show that timing exchanges at Level 1 are much faster
than at Level 3, and show much less variation, and the Level 3
variation in timing is considerable for all EMV cards that we
tested, and more so, for a proprietary card that implements a
test version of PayPass-RRP, we can relay at Level 3 with
a standard relay program. Overall, the variation at Level 3
across all cards, has led us to propose a new Level 1 protocol
for relay protection in EMV, in Section VII, which improves
on both Visa’s and Mastercard’s current solutions for relay
counteraction.

A. Level 1 and Level 3 Timings for EMV Cards

We measured the Level 1 and Level 3 message round trip
times (RTTs) for: (1) a Mastercard-RRP test card; (2) a
“normal” commercial Mastercard; (3) a commercial Visa card.
All the raw data, processing scripts and other programs we
used are available in [9].

Hardware/Software Setup: We used an Advanced Card
Systems ACR122u reader. A program acts as an EMV reader,
prepares the correct sequence of challenges (ISO 14443 mes-
sages, or Level 2 Command Application Protocol Data Units
(C-APDUs)) for a transaction with the card and, via the
ACR122u reader, sends this to the card; the sequences were
different for each card (PayPass-RRP, Mastercard, Visa), as
each executes a different protocol. To obtain RTTs and other
timings related to these exchanges, we placed a Proxmark in-
between the reader and card, to sniff the transaction, and thus
we obtained the full traces of the exchanges. This is discussed
further in Appendix C.

Experimental Design: To capture the variations that occur
when someone makes a contactless payment, we varied the
yaw angle at which the card was placed in the field and the
distance between the card and the reader. The distance was
maintained by resting the card on a spacer. We tested at angles
of 0°, 45°, 90°, 135° and 180°, and at distances of 5mm,
11.4mm, 21mm, 24mm, 27.4mm and 30.6mm. These are all
realistic positions a card may be held in to make a payment.
We took 20 measurements for each physical configuration,
making a total of 600 tests. We note that, apart from the
initial Level 1 messages, what we are actually measuring is
the time from when the reader sends the C-APDU (at Level 2)
until it receives the Response Application Protocol Data Unit
(R-APDU) (also at Level 2) back from the card.

Generally, the reader sends a message/C-APDU and
waits for a response/R-APDU from the card. We used the
hf 14a sniff command of the Proxmark client, which
sniffs the ISO 14443-A traffic and produces traces as per
Fig. 5. Thus, we can calculate the reply time of a card

Start | End | Src | Data (! denotes parity error) | CRC | Annotation
------+-------+-----+------------------------------------+----+-----------
0 | 1056 | Rdr |26 | | REQA
2260 | 4628 | Tag |04 00 | |
13296 | 15760 | Rdr |93 20 | | ANTICOLL
16964 | 22788 | Tag |3f af e3 54 27 | |
44144 | 54672 | Rdr |93 70 3f af e3 54 27 9a 70 | ok | SELECT_UID
55860 | 59444 | Tag |20 fc 70 | |
67680 | 72384 | Rdr |e0 50 bc a5 | ok | RATS
77364 | 91252 | Tag |0a 78 80 70 02 20 63 cb b7 80 8b 30 | ok |

Fig. 5. Excerpt from a Proxmark trace (timing in carrier periods ≈ 0.074µs)
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Fig. 6. Mean reply time for the 14443-A SELECT UID and RATS commands
(note the different scales here)

to a reader command, both for Level 1 and Level 3 level
messages. The reply time for one command is defined as
t = p (RdrStart−TagEnd), where Rdrstart is the time when
the reader starts transmitting its message and TagEnd is the
time when the card stops sending its reply.

B. Timing All EMV Cards at Level 1

For Level 1 timings, we focused on the responses to the
SELECT UID and Request for Answer To Select (RATS)
commands that both occur after the anti-collision routine is
complete. Note that the reply to the SELECT UID requires
no computation from the NFC chip on the card and would
be consistent with the behaviour of a nonce exchange if the
card’s nonce was prepared before the challenge was received.

Fig. 6 shows the average reply times for the Level 1
SELECT UID command and the RATS commands. The RATS
command involves more processing and its times are longer,
but still much shorter than those at Level 3. It can be seen
that there is little change in the timings for the SELECT UID
as we vary the angle or distance of the card. The standard
deviation did not vary across angles or distances and was
only 0.91µs and the time difference between the quickest reply
and the longest is only 2.36µs. For the RATS, the “normal”
Mastercard, had the longest average response time out of all
the cards, of 3231µs, with a standard deviation of 286.50µs.
So, for our experiments, timings at Level 1 appear relatively
stable across all EMV cards.

C. Timing a RRP Test-Card at Level 3

For Level 3 timings, we focus on the nonce-exchange in
the ERRD command, although results were obtained for the
other APDUs, so that they could be compared with the other
cards that we tested (see Appendix C).

Our Mastercard-RRP test card implements up to three
nonce-exchanges, as per the ERRD command we described
in Section II. In our tests, we sent all three nonce challenges,
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Fig. 7. Mean reply time for the nonce exchange commands implemented on
our Mastercard-RRP Test Card

i.e., three C-APDUs, and measured the response times for each
(labelled: rrp 1, rrp 2 and rrp 3). The average timings for
the first and second nonce-exchange messages at the different
heights and angles are shown in Fig. 7. The timings for the
third nonce exchange are very similar to those for the second.
The statistics for these three exchanges (mean/SD in µs) are:
53,000/13,170, 40,100/15,700 and 40,100/15,680. We note:
• The time for the first RRP exchange is significantly

longer. The Proxmark traces showed us that for the first
challenge only, the card responds to the ERRD command
by sending a wait request and then the response.

• The time taken depends on the distance of the card from
the reader, and not so much on the angle. A correlation
analysis confirmed this dependence. Similar correlations
were seen for the other APDUs that were measured.

• The standard deviations did not vary between positions
and was approximately 13,170, 15,700 and 15,680µs for
the different nonce exchange rounds.

• The timings measured inside the replay program are
significantly longer than those reported here, there is
an approximately 17 ms difference (see, for example,
Figure 14 in Appendix C which shows the results for all
of the first ERRD command exchange (denoted as rrp 1)
measurements). We initially thought that these delays
were due to the time taken to communicate with the
ACR122u reader, but subsequent tests with an Adafruit
PN532 interface connected to a Raspberry Pi showed
that the delays arose due to the PN532’s handling of
the protocol. (The ACR122u also uses the PN532 IC to
handle the NFC signalling).

In conclusion, all measurements, for all the cards tested,
showed that timings at Level 3 are far less stable than at
Level 1. This suggests that timing for relay-protection should,
for better all-round security, be done at Level 1 for EMV (and
for other application-layer protocols).

D. Relaying & Disclosure to Mastercard

Given the observed Level 3 timing variation, we looked at
the feasibility of relaying the timed nonce exchange from the
PayPass-RRP test card. Using the simple setup shown in
Fig. 8 we found that it is indeed possible to relay at Level 3
faster than the time taken by the card in the worse position to
complete a normal run. While holding the test PayPass-RRP

Fig. 8. Relay setup used to investigate possible PayPass-RRP relaying.

card, we presented it to the reader and of ten trials, three gave
timings within those seen in our measurements (for rrp 1, these
times were 67.79, 74.70 and 77.05ms, while the maximum
seen for a direct replay was 79.62ms.).

We discussed this relay attack against the test PayPass-
RRP card, and all the measurements, with Mastercard. They
welcomed the research and our suggestion that doing the timed
nonce-exchange at Level 1 may indeed be more robust against
even slightly stronger relay “boxes”. They also mentioned that
the three trials in the ERRD command should not be seen
only as an opportunity for re-tries by the relayer, but also
as a usability/recoverability feature: correcting human error,
and alerting the user that the card is in a non-ideal position.
Finally, they mentioned that newer cards (test or commercial),
which may appear soon, will be faster than our test card, and
so much harder to relay.

VII. A NEW LEVEL1-BASED RELAY-PROTECTION FOR
EMV: THE L1RP PROTOCOL

A. Protocol Design

Our L1RP protocol is an extension of the Mastercard EMV
protocol, and it provides relay resistance by timing a nonce
exchange at Level 1. The aim of our protocol is to ensure
that the EMV reader cannot successfully complete an EMV
transaction unless the card responds to the reader with its
nonce within the given time bounds. As in Mastercard’s RRP
protocol the card also returns timing information to enable
the reader to adjust its thresholds to allow for different timing
profiles on different cards.

We work in the threat model outlined in Section III. To
this we add the requirement that cards must be backwards
compatible with readers that do not support relay resistance,
without the possibility of downgrade attacks. Additionally,
we must ensure that the timing profile from the card can be
authenticated by the reader.

Protocol Overview: Following our findings in Section VI,
our L1RP protocol takes ideas from both the Mastercard and
the Visa relay-protections, improves on aspects of them and
combines the result into a new protocol.

Our L1RP protocol moves the timed nonce-exchange, pro-
posed in Mastercard PayPass-RRP, into the ISO 14443
Level 1 commands. This is informed by our measurements
in Section VI-B, where we concluded that Level 1 Relay
Resistance makes the RTT-measurements more reliable. As
with the proposed Visa protocol, we tie together data at Level 1
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with the EMV application authentication at Level 3. However,
note that at Level 1, we include nonces issued not just from
the card but from the reader as well, to avoid the problems
with the Visa proposal that we highlighted in Section V.

A run of our protocol L1RP is shown in Fig. 9. The card
signals to the reader that it supports our protocol using one of
bits in the ISO 14443 Answer to Request (ATQA) message
reserved for future use (bit 6 & bits 9-16). A bit value of 0
means the card does not support the nonce exchange, whereas
a value of 1 will signal that the exchange is supported.

Level 1 Relay Resistance: As per ISO 14443-3 [23] and
outlined in Appendix A, after a card responds with a Select
Acknowledge (SAK) message, it enters the ACTIVE state. The
protocol activation command (RATS) can then be sent by the
reader to start the application level protocol. However, a card
that is compliant with ISO 14443-3, and in the ACTIVE state
can accept proprietary commands from the reader instead.
This allows us to introduce our new Level 1 command,
NONCE_REQ, coupled with our NONCE_RES response; they
are used to execute the nonce exchange at the ISO 14443 level.
If the reader and card support our protocol, the reader sends
the NONCE_REQ command with a 32-bit nonce. A reader that
does not support the protocol will send the RATS command,
missing this NONCE_REQ command. The L1RP card replies
with the NONCE_RES response, with a 32-bit nonce. The
NONCE_REQ – NONCE_RES exchange is timed by the reader,
to prevent MitM attackers from relaying the messages. See
Fig. 10. After this exchange, the RATS command can be used
to continue the protocol.

Nonce Generation by the Card: Book 4 of the EMV
specification [35] (page 57) suggests that nonces on EMV
cards should be generated using specialist algorithms and
circuits, e.g., via a PRNG (pseudorandom number generator),

but this is left to the card implementer. We opt for this
EMV-driven approach, that is – we do not specify our card-
side nonce generation at the low-level. Normally, this is
proprietary to manufacturers (e.g., NXP), and should adhere to
the AIS 20/31 requirements (PTG.1/2/3, DRG.1/2/3/4) [36] for
PRNG security certification. Should a manufacturer implement
our protocol, we recommend similar PRNG-security practice
guidelines, as well as checking developments in the field of
PRNGs for cards [37] and for other computationally-limited
devices [38].

Including Proof of the Level 1 Nonce Exchange in
Level 3: At the EMV application level our protocol runs ex-
actly as the Mastercard PayPass protocol, but after receiving
the AC, the L1RP-compatible reader will use a new READ
RECORD command to read out the timing information for
the card (expected, maximum and minimum response times)
and the Level 1 nonces signed by the card along with the AC.
These signed nonces attest that the Level 1 nonce exchange
was done with the the card, and binds the nonces to the AC.

Protection from Downgrade Attacks: The card’s ability to
run our protocol is recorded in the AIP, described in Section
II-A, it is signed by the card in the SDAD which is checked by
the reader. So, any attempts to downgrade a card by changing
the AIP, to make the reader believe it doesn’t support L1RP
will be detected by the reader as a mismatch in the SDAD.

Separate Relay Resistance and Payment Proofs: We note
the separation of relay resistance and payment proofs (e.g.,
adding a “special” SDAD-like message sent by the card for
the distance bounding proofs). It would have been possible to
put the Level 1 nonces into the SDAD, rather than having a
separate new signature. We did not do this because: (1) we did
not want the possibility that a normal EMV transcript could be
confused with a transcript of our protocol; (2) this separation
allows for better backwards-compatibility especially over vari-
ous operation modes; (3) the separation allows clearer security
proofs (adhering to both established EMV as well as distance
bounding security models).

L1RP vs Visa’s Level 1 Relay-Protection: We now sum-
marise why L1RP does not suffer from the attack we showed
in Section V against Visa’s Level 1 relay-protection proto-
col. Recall that the security claims in Visa’s relay-protection
protocol rely on a value called UID coming only from the
card/phone’s side, i.e., the claimed security does not hinge
on any input from the reader side.

Unlike the Visa protocol, our L1RP protocol uses random
nonces (as opposed to UIDs) and they are issued from both
the card and the reader’s sides of the EMV protocol. Even if
we weakened our protocol, and let the card/phone send a UID
as per Visa’s case, just applying our attack from Section V as
is would still not work against this weakened L1RP. In our
attack, only the card’s UID is manipulated maliciously; if this
were applied to L1RP, the victim’s phone would not receive
the nonce of the real reader and the EMV-level checks in the
last step of L1RP would fail.

Now assume we lifted our attack in Section V to a MitM
who was resetting both the card and reader’s nonces in L1RP.



In L1RP, the reader’s nonce is sent out first, and the nonce
exchange is timed by the reader. So, to fall within the allowed
time-bound, the attacker would have to guess preemptively the
nonce of the reader such as to send it in time to the victim’s
phone. This would happen with a probability of 2−32, under
our assumption of pseudorandom nonces.

In summary, the security of our protocol is based on: (1)
session-identifying, pseudorandom data coming not just from
one side but from both sides of a two-party protocol; (2) timing
this exchange of the random data, so not only can the MitM
attacker not guess it, given its pseudo-random nature, but this
MitM cannot relay it effectively either.

B. Formal Verification of Security

We extend our model of Mastercard’s contactless protocol
from Section IV-G with support for our L1RP protocol. New
rules model the sending of the Level 1 ATQA message that
will indicate if a device supports our protocol and, for devices
that do, the NONCE REQ, NONCE RES nonce exchange
messages, as well as the reader asking for the DB proof. We
also enhance the model with the reader checkiing of this DB-
proof, the protocol-type recorded in the AIP, and add lemmas
to verify the lack of downgrade attacks.

Our model includes devices and readers that do and do not
support our L1RP protocol. We check that any combination of
devices and readers can finish an EMV transaction. We check
protection from downgrade attacks by ensuring that a reader
that supports our L1RP protocol can only ever finish a run,
without DB protection, if the device it is running the protocol
with does not support our L1RP protocol.

To verify protection from relay attacks we use the frame-
work of Mauw et. al. [5], who present a definition of causality-
based secure distance-bounding. This can be used to verify the
correctness of distance-bounding protocols without the need
to explicitly model time and locations. This model assumes a
protocol with a verifier (the terminal) and a prover (the device).
The verifier will have a timed phase; in our Tamarin model
we indicate this by a DB Start action when the terminal sends
the NONCE REQ message and a DB End action when the
terminal receives the NONCE RES message.

The action that the device/prover is expected to perform
during this phase (the reply to the NONCE REQ message) is
tagged with a DB Action label, and we add a DB Claim label
to the terminal Tamarin rule that verifies the DB proof. All of
these actions are parameterised on the identities of the prover
and the verifier, and the nonces used in the transaction.

Mauw et. al. [5] show that the standard notion of distance-
bounding security, regarding MitM attackers, holds if when-
ever there exists a DB Claim(P,V,Nc,Nr) action in a trace
then there must have been a preceding DB End (V,Nc,Nr)
action, preceded by a DB Action (P,Nc,Nr) preceded by a
DB Start(V,Nr). I.e., the prover must have acted during the
timed phase of the verifier or, P or V must have been compro-
mised. This definition a la Mauw et. al. [5] is easy to check
in Tamarin, which takes 327 seconds to show that it holds and

[usb] pm3 --> hf 14a list
[+] Recorded activity (trace len = 137 bytes)
[=] Start = Start of Start Bit, End = End of last modulation.
Src = Source of Transfer
[=] ISO14443A - All times are in carrier periods (1/13.56MHz)

Start | End | Src | Data (! denotes parity error) | CRC | Annotation
--------+--------+-----+-------------------------------+-----+------------

0 | 992 | Rdr |52 | | WUPA
2100 | 4532 | Tag |04 01
7040 | 9504 | Rdr |93 20 | | ANTICOLL

10548 | 16372 | Tag |88 f6 53 90 bd | |
19072 | 29536 | Rdr |93 70 88 f6 53 90 bd ec 2e | ok | SELECT_UID
30644 | 34228 | Tag |20 fc 70 | |
36480 | 44704 | Rdr |99 76 0a 4f 8a 7e e3 | | NONCE_REQ
45748 | 51572 | Tag |c0 7d 6a d1 06 | | NONCE_RES
56192 | 60960 | Rdr |e0 80 31 73 | ok | RATS
62004 | 69044 | Tag |04 58 80 02 13 ce | ok |

← 01 indicates to do the random nonce exchange

select completed

timed

Fig. 10. The nonce exchange proposal.

that our protocol provides the distance bounding protection we
require. The full annotated model is in L1RP.spthy in [9].

C. Practical Experiments

The proposed extension to the current Level 1 protocol was
tested using two Proxmarks. On one Proxmark, we imple-
mented the reader protocol including, if required, the nonce-
exchange, and on the other, we implemented a simulation of
the card, again including our proposed nonce-exchange. On
top of this L1RP-driven implementation, our Proxmark-based
programs include code to measure the message times needed
to assess our implementation. The timings (and other tests)
only refer to Level 1 commands up to and including the RATS
command, as these are the ones used in L1RP.

The results from one of our timing tests are shown in
Fig. 10, which also highlights the proposed changes to the
protocol (in this case, for a 4 byte UID).

Proxmark Implementation of L1RP: We modified the
Proxmark code to add two Level 1 functions, one to imple-
ment the reader side and the other the card side. These were:
• noncerdr this implements the reader side and executes

the protocol up to the RATS message. If bit 9 of the
ATQA message is set it carries out the nonce exchange.
The nonce is obtained using the Linux getrandom
function which gets random bytes from /dev/random.

• noncesim this simulates a card which expects to do a
nonce exchange and so sets bit 9 in ATQA. The card is
given a random UID and nonce, these are both obtained
using the Linux getrandom function.

Notes on the implementation:
• We used ATQA bit 9 to flag that the card can do the

nonce exchange.
• To identify the reader’s nonce exchange message, we

chose an unused message code, 0x99. On the card side,
we send the nonce and a Block Check Character (BCC),
as is done when a card sends its UID.

• We tested the backwards compatibility of our new card
and reader implementations by verifying that they would
work with an existing EMV reader and EMV card.
Time Measurements for L1RP: The RTT using the Prox-

marks was measured in 30 tests with a mean of 1,116µs
with a standard deviation of 2.3µs. This time is very similar
to the time measured for the SELECT UID command for



the Proxmarks and for ‘actual’ payment cards (see Table I,
Appendix C), which suggests time bounding this exchange
may work well. These Proxmark results are encouraging, and
we will implement L1RP and obtain more measurements.

Challenges when Relaying over L1RP: Analysing our
Proxmark-issued timing data, we observed that most of the
time for the nonce-exchange is taken sending and receiving
the data (≈1037µs), i.e., not preparing the data. This makes a
relay with unmodified COTS hardware difficult.

Reading the data directly and using this to modulate a
carrier signal used to transmit the data to a receiver where it is
demodulated and used to drive a loop antenna could provide a
low-level relay, but this is a much more difficult undertaking
than the threat model we envisage (see Section III). This type
of lower-level relay has been illustrated for an LF RFID system
by Francillon et al. [19] who used it to attack a car’s RFID key-
entry system. However, this was for a LF RFID system and
not the HF RFID system used for EMV payment cards. While
implementing such a low-level (Level 1) attack on HF RFID
systems is theoretically feasible it has yet to be demonstrated.

VIII. RELATED WORK

Practical (relay) attacks against EMV were demonstrated in
a range of works, e.g. [39], [26]. Other attacks have been
reported against EMV. Two over the limit attacks, [2], [7] for
Visa are discussed in sub-section II-B. In [8], a Mastercard
card is made to look like a Visa card in order to perform an
over the limit attack on Mastercard, which is now patched.
[2] describes an attack that makes an offline reader accept an
invalid AC for Visa cards (an attack that was also described in
[26, p.5]. Murdoch et. al. [40] presented a MitM attack against
contact based EMV, and evidence in practice is presented in
[11]. Emms et. al. [41] show how the non-TAP & PIN card
limit can be bypassed by switching currencies.

None of these attacks would work against EMV on mobile
devices if CDCVM authentication was always required, and
these attacks require a relay, and so would be stopped by a
protocol that prevented relaying (the main focus of our work).
We are the first to mount attacks bypassing authentication to
make illicit payments in mobile payment apps, and the first to
look at and exploit their different operating modes.

Distance Bounding: DB protocols were introduced by
Brands and Chaum [42] with the view of combating relay-
based MitM attacks. In distance-bounding protocols a reader
and a tag (RFID card, smart card, etc.) run a challenge-
response protocol in which the reader measures the RTT and if
this is smaller than a given bound, the reader assumes physical
proximity between it and the card. The survey in [43] gives
numerous distance-bounding protocols, security concepts and
attacks in distance bounding.

RRP closely follows the previously proposed PaySafe proto-
col [26]. RRP was first formally verified in [5]. [44] performs
a timing analysis of RRP and finds it secure, but without
varying the positions of the card in the field, as we do.

NXP provides a distance-bounding protocol on their DES-
Fire cards. Patents [45], [46] are the only public source of

information on this, first recounted in [47]. These show that
NXP’s distance bounding uses a Level 1 nonce exchange,
however it provides no details of how/whether this distance
bounding is tied to the upper level protocols or applications.

Symbolic Verification of EMV: Past symbolic-verification
models of EMV include [48], [2], [8] and of EMV with
distance bounding [47], [26], [5], [49], [44].

The most up-to-date and complete formal model for EMV is
in [2]. We follow this model (for contactless Visa, Mastercard)
and extend it to encode mobile apps in transport and non-
transport models, in a unitary manner (CDA, DDA, high/low
in one model). We add a full model of the IAD to their models,
and show that Visa/bank checking the IAD stops their attack.

Symbolic Verification of Distance Bounding: Automat-
able symbolic verification of distance-bounding protocols was
first proposed by Basin et. al. [50]. Many recent developments
exist. Nigam et. al. [51] develop a distance bounding checking
tool based on Maude. Rowe et al, [52] present a framework
based on strand spaces. Debant et. al. in [49], [53] are the
only symbolic models to encode time and location explicitly.
Symbolic models tend to eliminate timing even if this is
considered in some of the theoretical models. Chothia et.
al., suggest a framework without an explicit model of time
[26], [47]. Mauw et. al. [5], [54] have a proof that, under
certain conditions and for certain protocols (e.g., with one DB
exchange, with no other timing notions, without certain mes-
sage inter-dependencies), timed DB-security can be reduced to
checking an order of events on traces; this elegant definition
can be easily checked in the Tamarin prover and is the method
we use. Boureanu, et. al. [44] extends this to support mobility.

IX. CONCLUSIONS

We investigated mobile payments-apps in different opera-
tion modes, showing their different defences against bypassing
authentication in transport mode. This allows us to make
fraudulent Visa payments with locked iPhones of any value we
wish. This vulnerability is due to the lack of checks performed
on the iPhone combined with the lack of checks at the Visa
back end. Apple Pay with Mastercard is not vulnerable and
nor are Mastercard and Visa with Samsung Pay.

We have looked at the practical security of Mastercard and
Visa’s relay-counteraction solutions for EMV, and found that
the former could potentially be functionally improved, whereas
the latter is lacking in security. To fix these issues, we have
proposed an EMV relay-resistant protocol that combines ideas
from both the Mastercard and Visa relay-countermeasures
proposals. We have proved our protocol formally correct and
described a trial implementation of its distance-bounding part,
on Proxmarks; this shows our protocol is practical for EMV
cards, and also for use with Apple Pay and Samsung Pay to
stop relaying to the so-called express transit systems.

Acknowledgements: This work is part of the “TimeTrust”
project, funded the UK’s National Cyber Security Centre
(NCSC). We thank Mastercard UK and Visa Research for
providing useful insights and feedback.



REFERENCES

[1] EMVCo, “Book C-2 kernel 2 specification v2.7. EMV contactless
specifications for payment system,” Feb 2018.

[2] D. A. Basin, R. Sasse, and J. Toro-Pozo, “The EMV standard: Break,
fix, verify,” in Security and Privacy (SP), 2021.

[3] C. Yuexi, M. Kekicheff, M. Top, and H. Ngo, “Binding Cryptogram
with Protocol Characteristics,” 2019, uS Patent App. 16/348,085.

[4] H. Shan and J. Yuan, “Man in the NFC,” DefCon 25, 2017.
[5] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua, “Distance-

bounding protocols: Verification without time and location,” in IEEE
Symposium on Security and Privacy, SP, 2018.

[6] “Lab 401 proxmark 3 rdv 4.” [Online]. Available: https://lab401.com/
products/proxmark-3-rdv4

[7] L.-A. Galloway and T. Yunusov, “First contact: New vulnerabilities in
contactless payments,” in Black Hat Europe, 2019.

[8] D. Basin, R. Sasse, and J. Toro-Pozo, “Card brand mixup attack:
Bypassing the PIN in non-visa cards by using them for visa transactions,”
in 30th USENIX Security Symposium, 2021.

[9] “Practical EMV relay protection: Artefacts.” [Online]. Available:
https://gitlab.com/practical emv

[10] “Visa mobile contactless payment specification,” https:
//technologypartner.visa.com/Library/Specifications.aspx.

[11] H. Ferradi, R. Geacuteraud, D. Naccache, and A. Tria, “When
organized crime applies academic results - a forensic analysis of an
in-card listening device,” IACR Cryptology ePrint Archive, vol. 2015,
p. 963, 2015. [Online]. Available: https://eprint.iacr.org/2015/963

[12] Visa, “Visa merchant data standards manual,” 2019. [On-
line]. Available: https://usa.visa.com/content/dam/VCOM/download/
merchants/visa-merchant-data-standards-manual.pdf

[13] EMVCo, “Book C-3 kernel 3 specification v2.6. EMV contactless
specifications for payment system,” Feb 2016.

[14] ——, “EMV payment tokenisation specification – technical framework
v2.2,” 2020.

[15] “Visa contactlesspayment specification,” https://technologypartner.visa.
com/Library/Specifications.aspx.

[16] EMVCo, “Book 2: Security and key management,” Nov 2011.
[17] Visa Research, “Visa proposal for level 1 protocol parameter binding

against relay attack, version 0.1,” 2017.
[18] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The tamarin prover

for the symbolic analysis of security protocols,” in Computer Aided
Verification - 25th International Conference, CAV, 2013.

[19] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive
keyless entry and start systems in modern cars,” Cryptology ePrint
Archive, Report 2010/332, 2010, https://eprint.iacr.org/2010/332.

[20] M. Singh, P. Leu, and S. Capkun, “UWB with pulse reordering:
Securing ranging against relay and physical-layer attacks,” in Network
and Distributed System Security Symposium, NDSS, 2019.

[21] “Where you can travel on public transport with apple pay,” 2020.
[Online]. Available: https://support.apple.com/en-gb/HT207958

[22] “Samsung faq,” 2020. [Online]. Available: https://www.samsung.com/
uk/samsung-pay/faq/

[23] ISO, “14443-3: 2018 – Identification cards – Contactless integrated
circuit cards – Proximity cards – Part 3: Initialization and anticollision,”
International Organization for Standardization, Standard, 2018.

[24] “Common vulnerability scoring system version 3.1: Specification
document,” 2019. [Online]. Available: https://www.first.org/cvss/
specification-document

[25] “Common vulnerability scoring system version 3.1 calculator,” 2019.
[Online]. Available: https://www.first.org/cvss/calculator/3.1

[26] T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thomp-
son, “Relay cost bounding for contactless EMV payments,” in Financial
Cryptography (FC), ser. LNCS, 2015.

[27] Citi bank, “Merchant category codes,” 2015. [Online]. Avail-
able: https://www.citibank.com/tts/solutions/commercial-cards/assets/
docs/govt/Merchant-Category-Codes.pdf

[28] EMVCo, “Book 3: Application specification,” Nov 2011.
[29] B. Blanchet, “Security protocol verification: Symbolic and computa-

tional models,” in Principles of Security and Trust, 2012.
[30] D. Dolev and A. Yao, “On the Security of Public-Key Protocols,” IEEE

Transactionson Information Theory 29, vol. 29, no. 2, 1983.
[31] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov, “Undecidability

of Bounded Security Protocols,” in Workshop on Formal Methods and
Security Protocols (FMSP’99), 1999.

[32] S. Jasek, “A 2018 practical guide to hacking nfc/rfid,” 2018.
[Online]. Available: https://smartlockpicking.com/slides/Confidence A
2018 Practical Guide To Hacking RFID NFC.pdf

[33] Android Developers, “Host-based card emulation overview,”
2019. [Online]. Available: https://developer.android.com/guide/topics/
connectivity/nfc/hce

[34] EMV, “Contactless specifications for payment systems, book A, version
2.6 – architecture and general requirements,” 2016.

[35] EMVCo, “Book 4: Cardholder, attendant, and acquirer interface require-
ments,” May 2017.

[36] W. Schindler and W. Killmann, “Evaluation Criteria for True (Physical)
Random Number Generators Used in Cryptographic Applications,” in
Workshop on Cryptographic Hardware and Embedded Systems, 2002.

[37] R. N. Akram, K. Markantonakis, and K. Mayes, “Pseudorandom Number
Generation in Smart Cards: An Implementation, Performance and Ran-
domness Analysis,” in New Technologies, Mobility and Security, 2012.

[38] A. Francillon and C. Castelluccia, “TinyRNG: A Cryptographic Random
Number Generator for Wireless Sensors Network Nodes,” in Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks and
Workshops, 2007.

[39] L. Francis, G. Hancke, and K. Mayes, “A practical generic relay attack
on contactless transactions by using NFC mobile phones,” International
Journal of RFID Security and Cryprography (IJRFIDSC), 2013.

[40] S. J. Murdoch, S. Drimer, R. J. Anderson, and M. Bond, “Chip and pin
is broken,” in Symposium on Security and Privacy, S&P, 2010.

[41] M. Emms, B. Arief, L. Freitas, J. Hannon, and A. van Moorsel,
“Harvesting high value foreign currency transactions from EMV con-
tactless credit cards without the PIN,” in Computer and Communications
Security, CCS, 2014.

[42] S. Brands and D. Chaum, “Distance-bounding protocols,” in Advances
in Cryptology – EUROCRYPT. Springer, 1993, pp. 344–359.

[43] G. Avoine, M. Bingol, I. Boureanu, S. Capkun, G. Hancke, S. Kardas,
C. Kim, C. Lauradoux, B. Martin, J. Munilla, and et al, “Security of
Distance-Bounding: A Survey,” CSUR, vol. 4, 2017.

[44] I. Boureanu, T. Chothia, A. Debant, and S. Delaune, “Security Anal-
ysis and Implementation of Relay-Resistant Contactless Payments,” in
Computer and Communications Security (CCS), 2020.

[45] P. Thueringer, H. De Jong, B. Murray, H. Neumann, P. Hubmer, and
S. Stern, “Decoupling of measuring the response time of a transponder
and its authentication,” November 2008.

[46] P. Janssens, “Proximity check for communication devices,” April 2015.
[47] T. Chothia, J. de Ruiter, and B. Smyth, “Modelling and analysis of a

hierarchy of distance bounding attacks,” in USENIX Security, 2018.
[48] J. de Ruiter and E. Poll, “Formal analysis of the emv protocol suite,” in

Theory of Security and Applications - Joint Workshop, TOSCA, 2011.
[49] A. Debant, S. Delaune, and C. Wiedling, “Proving physical proximity

using symbolic models,” Univ Rennes, CNRS, IRISA, France, Research
Report, Feb. 2018.

[50] D. Basin, S. Capkun, P. Schaller, and B. Schmidt, “Formal reasoning
about physical properties of security protocols,” Transactions on Infor-
mation and System Security (TISSEC), 2011.

[51] V. Nigam, C. Talcott, and A. Aires Urquiza, “Towards the automated
verification of cyber-physical security protocols: Bounding the number
of timed intruders,” in European Symposium on Research in Computer
Security (ESORICS), 2016.

[52] P. D. Rowe, J. D. Guttman, and J. D. Ramsdell, “Assumption-Based
Analysis of Distance-Bounding Protocols with CPSA,” in Logic, Lan-
guage, and Security, 2020.

[53] A. Debant, S. Delaune, and C. Wiedling, “Symbolic analysis of terrorist
fraud resistance,” in European Symposium on Research in Computer
Security, (ESORICS). Springer, 2019.

[54] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua, “Post-collusion
security and distance bounding,” in Computer and Communications
Security, CCS, 2019.

[55] ISO, “14443-4: 2018 – Identification cards – Contactless integrated
circuit cards – Proximity cards – Part 4: Transmission protocol,”
International Organization for Standardization, Standard, 2018.

[56] ——, “7816-4: 2020 – Identification cards – Integrated circuit cards Part
4: Organization, security and commands for interchange,” International
Organization for Standardization, Standard, 2020.

[57] EMVCo, “EMV Contactless Specifications for Payment Systems; Book
D; EMV Contactless Communication Protocol Specification,” 2016.

https://lab401.com/products/proxmark-3-rdv4
https://lab401.com/products/proxmark-3-rdv4
https://gitlab.com/practical_emv
https://technologypartner.visa.com/Library/Specifications.aspx
https://technologypartner.visa.com/Library/Specifications.aspx
https://eprint.iacr.org/2015/963
https://usa.visa.com/content/dam/VCOM/download/merchants/visa-merchant-data-standards-manual.pdf
https://usa.visa.com/content/dam/VCOM/download/merchants/visa-merchant-data-standards-manual.pdf
https://technologypartner.visa.com/Library/Specifications.aspx
https://technologypartner.visa.com/Library/Specifications.aspx
https://eprint.iacr.org/2010/332
https://support.apple.com/en-gb/HT207958
https://www.samsung.com/uk/samsung-pay/faq/
https://www.samsung.com/uk/samsung-pay/faq/
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/calculator/3.1
https://www.citibank.com/tts/solutions/commercial-cards/assets/docs/govt/Merchant-Category-Codes.pdf
https://www.citibank.com/tts/solutions/commercial-cards/assets/docs/govt/Merchant-Category-Codes.pdf
https://smartlockpicking.com/slides/Confidence_A_2018_Practical_Guide_To_Hacking_RFID_NFC.pdf
https://smartlockpicking.com/slides/Confidence_A_2018_Practical_Guide_To_Hacking_RFID_NFC.pdf
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://developer.android.com/guide/topics/connectivity/nfc/hce


Reader Card

UID ∈R {0, 1}24

WUPA/REQA

ATQA

The reader carries out the anti-collision routine.

ANTICOLLISION

UID

SELECT UID

SAK

Additional ANTICOLLISION, UID, SELECT UID

and SAK, based on UID size transmitted in ATQA

RATS

ATS

Fig. 11. ISO 14443 Protocol Sketch (when there is a single card in the field)

APPENDIX A
THE ISO 14443 PROTOCOL

There are several standards for proximity cards defining
their electrical characteristics and how the fields are modu-
lated and data transmitted between a reader and a proximity
(RFID) card. Contactless payment cards use the ISO 14443
standard [23], [55] for the lower levels of the communication
stack. There are four documents in this standard, the first two
define the electrical characteristics and modulation schemes to
be used. We do not need to consider these in the work that we
are reporting. We focus on ISO 14443-3, which defines how
a card establishes a link with a reader and on ISO 14443-4,
which gives the transmission protocol to be used after the card
is “linked” to the reader. Built on top of this is a protocol,
ISO 7816-4, which defines how data is packaged up into
APDUs. The EMV specifications refer to the 14443 standards
as Level 1, the ISO 7816-4 standard [56] as Level 2, and the
EMV messages themselves as Level 3.

A. ISO 14443-3

The ISO 14443-3 standard [23] defines how the initial link
between a reader and a card is setup (see Fig. 11). The reader
is regularly polling for proximity cards by sending WUPA
or REQA messages. When a card enters the magnetic field
generated by the reader, the card draws energy from the reader
and when it receives a WUPA or a REQA message it starts
the protocol by replying with an ATQA message.

The ATQA response gives the reader information about the
card that it can then use in the steps that follow. In particular,
it tells the reader the size of the UID that the card uses and
this is used in the next anti-collision phase. Several cards
could respond to the same WUPA/REQA message and the
anti-collision phase is used to select a single card for the next

stage. During this process a number of ANTICOLLISION and
SELECT messages from the reader are used, finally selecting
a single card. In the final stage the reader sends a SELECT
message with the UID being selected and the card responds
with an acknowledgement (SAK). This acknowledgement tells
the reader that the card is compliant with ISO 14443-4 and
can send the RATS message (bit 3=0 and bit 6=1). Fig. 11
shows the process when there is only a single response and
the anti-collision phase is cut short. This applies in the tests
that we have been doing and it should also be noted that, for
payment cards, if the reader detects a collision the payment
is rejected [57]. Once a card is selected the reader moves on
to the next part of the protocol with the card in the ACTIVE
state.

B. ISO 14443-4

When a card is selected and in the ACTIVE state, the
ISO 14443-4 standard [55] specifies how the communication
should proceed. It starts with the reader sending a RATS
command and the card replying with an Answer to Select
(ATS) response. These two message setup parameters for the
communications that follow, such as limits on the size of
frames that can be sent, or received, and for the card, timing
parameters and the “historical bytes”. Historical bytes are
optional and can be used to transfer card specific information
from the card to the reader. This standard also details how
large frames should be split, sent, and then re-combined, and
how the card can request more time to respond by sending
frame waiting time extension requests. For our reader all of
these operations are carried out by the NFC chip, it sets
the parameters for the transfers (except the historical bytes)
and once the RATS–ATS exchange is completed, frames to
and from the layer above are handled transparently. Splitting
frames will clearly affect the timing, so any timed exchange
should use as small a frame as possible.

APPENDIX B
THE PAYWAVE & VISA-L1 PROTOCOLS

The VISA-L1 protocol is an extension of the Visa Pay-
Wave protocol shown in Fig. 2.

The extension of the Visa PayWave protocol to the VISA-
L1 protocol is one where the UID (the blue message in Fig. 11)
is randomised (as opposed to being static) and this UID is
included in the SDAD. The Visa specification document [17]
only states that the UID should be cryptographically bound
with the Level 3 protocol session data. Doing this by including
the UID specifically inside the SDAD (as opposed to other
parts of the protocol, such as the AC) is based on our
conversations with Visa Research.

Fig. 12 shows the diagram of the relay attack against VISA-
L1, which can be done with a rooted Android phone.

APPENDIX C
TIMINGS RESULTS

For the Mastercard-RRP test card, in addition to measuring
the RRP messages, we also measured the response times for
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the other messages used. For comparison, we also measured
the response times for the messages from a “normal” Master-
card and Visa card running their protocols. Apart from the
test card, none of our Mastercards responded to the RRP
messages.

The timings for the Level 1 messages are given in Table I.
We see that the average response times for the WUPA,
ANTICOLL and SELECT UID messages are all very similar.
Although there are some differences in the variability, note
that these figures are in µs. For all three of these messages
there is no correlation between the time taken and the distance
of the card from the reader (see Table III). For the RATS
messages the two Mastercards have similar timings, while for
the Visa card the response time is shorter, but so is the message
size. However, the difference in length does not totally explain
the differences. The timings for the responses to the RATS
message are correlated with the distance from the reader. It
is difficult to be certain, but it seems that for the first three
of these messages the response is automatic, once energised
by the field the card can immediately respond. The RATS
message clearly needs some processing to be done before it
can respond and the time for this depends on the strength of
the energising electromagnetic field. This is also seen in the
Level 3 results given below. To minimise time variations, any
nonce exchange at this level should be organised so that any
processing required is kept to a minimum – the card’s nonce
should be generated as soon as the card enters the field and
before it responds to the WUPA command.

We now present selected timing results for Level 3 com-
mands, we consider the GPO message with its reply, as well as
the nonce exchanges of the Mastercard-RRP card. The results
obtained are summarised in Table II. For the GPO 1 message,
plots of the message timings with respect to card distance and

TABLE I
LEVEL 1 REPLY TIME MEASUREMENTS FOR MASTERCARD AND VISA

CARDS, IN µS.

command avg std bytes range
Mastercard-RRP
wupa 340.46 0.91 2 2.36
anticoll 699.15 0.88 5 2.36
select uid 1123.91 0.89 3 2.36
rats 2875.93 163.82 22 549.85
Mastercard
wupa 340.09 6.17 2 146.31
anticoll 699.08 0.70 5 2.36
select uid 1127.77 12.38 3 208.85
rats 3231.61 286.50 21 989.97
Visa
wupa 339.34 13.55 2 147.49
anticoll 699.29 0.76 5 2.36
select uid 1127.29 17.58 3 208.85
rats 1799.91 82.73 12 246.61
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Fig. 13. Average reply times for the EMV GPO command and response

angle are shown in Fig. 13. Just as for the RATS command,
there is a clear correlation between the response times and the
distance of the card from the reader for all of these commands
(see Table III).

We also carried out correlation analysis on the timing
measurements, with respect to the different distances we
recorded. We tested the hypothesis of whether there is a
linear relationship between the distance between a card and
a reader, and the reply times observed, for each Level 1 and
Level 3 command. The data reveals that for most Level 1
commands (WUPA, ANTICOLLISION and SELECT UID),
there is no significant relationship. However, for Level 3
commands there is a strong significant correlation between
the two variables. This confirms the intuitive observations
formed from the average and standard deviation analysis, that
performing distance bounding at Level 1 would allow tighter



TABLE II
LEVEL 3 REPLY TIME MEASUREMENTS FOR MASTERCARD AND VISA

CARDS ACROSS ALL ANGLES AND DISTANCES, IN µS.

command avg std bytes range
Mastercard-RRP
Select 2Pay 97371.78 14495.52 42 76842.48
Select AID 67223.86 6617.87 112 23995.28
GPO 1 58862.01 8926.51 51 28307.96
rrp 1 48429.66 6373.18 17 20200.59
rrp 2 34920.51 8672.56 17 28883.78
rrp 3 34919.93 8675.94 17 27638.94
read record: 01, SFI: 2 86088.06 5675.82 178 17990.56
read record: 01, SFI: 3 104328.99 5765.41 203 18273.75
read record: 01, SFI: 4 41900.57 5419.67 40 17139.82
read record: 02, SFI: 5 83108.45 5641.58 144 17851.33
checksum 23401.71 8088.24 5 25137.46
Mastercard
Select 2Pay 39790.21 4472.72 81 15263.72
Select AID 45680.31 7105.98 87 25137.46
GPO 1 51490.57 14234.50 25 48857.82
GPO 2 390503.14 129159.73 174 571411.21
read record: 01, SFI: 2 63134.47 6804.63 180 23153.98
read record: 01, SFI: 4 85438.76 7171.63 201 44305.60
read record: 02, SFI: 4 85050.24 7179.88 241 26033.04
Visa
Select 2Pay 37100.56 4485.14 81 13015.93
Select AID 37755.15 6217.96 91 17715.63
GPO 1 100902.32 21548.54 81 107037.17

Fig. 14. RRP 1 timings obtained from the Proxmark and from inside the
replay program.

time bounds to be imposed.

TABLE III
CORRELATION COEFFICIENT AND PROBABILITIES FOR REPLY TIME

MEASUREMENTS FOR VISA AND MASTERCARD CARDS.

Corr coef p-value
Mastercard-RRP
wupa -0.08 0.06
anticoll -0.03 0.47
select uid -0.03 0.41
rats 0.82 < 0.05
Select 2Pay 0.80 < 0.05
Select AID 0.83 < 0.05
GPO 1 0.80 < 0.05
rrp 1 0.82 < 0.05
rrp 2 0.85 < 0.05
rrp 3 0.85 < 0.05
read record: 01, SFI: 2 0.82 < 0.05
read record: 01, SFI: 3 0.82 < 0.05
read record: 01, SFI: 4 0.82 < 0.05
read record: 02, SFI: 5 0.82 < 0.05
checksum 0.82 < 0.05
restore 0.88 < 0.05
Mastercard
wupa 0.02 0.62
anticoll -0.16 < 0.05
select uid 0.06 0.14
rats 0.74 < 0.05
Select 2Pay 0.72 < 0.05
Select AID 0.72 < 0.05
GPO 1 0.74 < 0.05
GPO 2 0.73 < 0.05
read record: 01, SFI: 2 0.73 < 0.05
read record: 01, SFI: 4 0.72 < 0.05
read record: 02, SFI: 4 0.73 < 0.05
Visa
wupa -0.01 0.70
anticoll -0.28 < 0.05
select uid -0.06 0.12
rats 0.69 < 0.05
Select 2Pay 0.81 < 0.05
Select AID 0.82 < 0.05
GPO 1 0.81 < 0.05
restore 0.78 < 0.05



APPENDIX D
EMV ACRONYMS & MODELS DIFFERENCES

TABLE IV
EMV ACRONYMS USED IN THIS PAPER.

AC Application Cryptogram A cryptogram generated by the card and used by the Issuer to confirm the legitimacy of the
transaction.

AFL Application File Locator A list of application data records stored on the card. This is used to indicate to the terminal what
data should be used when processing the transaction.

AID Application Identifier An Application Identifier uniquely labels an EMV application. A card reports to a reader the AIDs
programmed into it, and the reader will select a supported one to process a transaction.

AIP Application Interchange Profile This indicates to the terminal what processing should be done for the transaction.
ATC Application Transaction Counter A counter stored on the card and incremented for each transaction. The Issuer monitors this value

which should always increase.
CARD Card Authentication Related Data Authentication data that may be returned as part of the transaction data. If returned it includes a

card nonce and the authorised payment amount.
CDA Combined DDA and AC This is one method used for offline card authentication and the signed data and application

cryptogram are generated together.
CDCVM Consumer Device CVM The authentication method used on the consumer’s own device for cardholder verification.
CDOL Card Risk Management Data Object

List
This list specifies the data to be used when generating the AC.

CID Cryptogram Information Data This data is returned by the card as part of the response to the Generate AC command. It is used
to indicate the type of cryptogram and the actions to be taken by the terminal.

CTQ Card Transaction Qualifier This is set on the card when it is issued and is used to control what actions the terminal should
take during a transaction.

CV Cardholder Verification Verifying that it is the legitimate cardholder who is making the transaction.
CVM Cardholder Verification Method This is used to verify that it is the legitimate cardholder that is presenting the card for payment.

There are different verification methods and they have different payment limits applied to them.
CVR Card Verification Results Data returned to the Issuer as part of the IAD.
DDA Dynamic Data Authentication Used to authenticated the card, but unlike SDA the card is required to sign a nonce from the terminal.

This is more secure and is designed to stop replay attacks.
ERRD Exchange Relay Resistance Data The EMV command used by the Mastercard protocol for providing relay resistance for contactless

cards.
FCI File Control Information This is a template that gives information about the data fields that follow. The FCI is not specific

to EMV, it is part of the Level 2 specification (ISO/IEC 7816-4 [56]).
GEN AC Generate AC The instruction to generate the application cryptogram.

GPO Get Processing Options A command sent to the card with the requested PDOL data to retrieve transaction specific application
data (AFL and IAD).

IAC Issuer Action Code This specifies what action the Issuer wants to be taken based on the TVR. Possible actions are:
default, denial and online.

IAD Issuer Application Data Proprietary application data to be used in the transaction.
ICC Issuer Country Code Indicates the country of the card issuer.

MCC Merchant Category Code A standard code (ISO 18245) used for retail financial transactions to classify the business type.
MNL Merchant Name and Location Just what it says, although it is not always correctly initialised. For TfL it contains the station name.
ODA Offline Data Authentication Mode of authenticating the card when the terminal is offline. This may be done using DDA, or

SDA.
PAR Payment Account Reference A non-financial reference assigned to each unique Payment Account Number (PAN) and used to

link a Payment Account represented by that PAN to an affiliated Payment Token.
PDOL Processing options Data Object List A list of data sent to the card for it to use when processing the transaction.
SDA Static Data Authentication Allows the card to be authenticated when in offline mode using fixed data.

SDAD Signed Dynamic Application Data A digital signature on the data used for DDA, or SDA.
Track 2 User’s account information on the card The location of the user’s data on the card.
TRID Token Requestor ID ID which uniquely identifies the pairing of Token Requester with the Token Service Provider.
TRM Terminal Risk Management The processes carried out on the terminal to protect from fraud.
TTQ Terminal Transaction Qualifier Data fixed on the terminal detailing its abilities and requirements.
TVR Terminal Verification Results This 5 byte result contains flags that show the result of the different processing functions that have

been carried out as part of the transaction.
UN Unpredictable Number A nonce used as part of a transaction. Both the terminal and the card may generate and use nonces.

TABLE V
EMV DATA DIFFERENCES BETWEEN BASIN ET. AL. MODELS AND MODELS PRESENTED IN THIS PAPER.

EMV data Basin et. al. [2] Our models Comments
IAD Format 0/1/3 Format 4 IAD format is given by the IAD length (1st byte) and, for Format 2 & 4, the left nibble

of the CVN (2nd byte); cross-checking IAD with transaction amount would prevent
limit-bypass attack presented in [2].

CVR (part of IAD) 7 3 Format 4 contains a CDCVM bit; checking this would prevent limit-bypass attack
presented in [2].

MCC 7 3 Sent to payment network, even if not present in transaction APDUs; cross-checking
MCC with IAD would prevent limit-bypass attacks.


	Introduction
	Background
	Overview of EMV
	Mastercard's Protocol
	Visa's Protocol

	Over the Limit Attacks Against Tap & PIN cards
	Visa Relay Protection Protocol
	Mastercard Relay Protection Protocol

	Threat Model
	Mobile-Payments via Transport Mode
	Setup and Data Collection
	Visa Apple Pay Express Transit Replay & Relay Attack
	Investigation of Mode-Change in Samsung Pay
	Investigating the IAD
	Responsible Disclosure
	Comparison with Existing Attacks Over the Limit Attacks
	Formal Verification
	Verifying Visa in Apple & Samsung Pay
	Verifying Mastercard in Apple & Samsung Pay


	Visa's Level 1-Relay Protection
	Level 1 and Level 3 Timing in EMV
	Level 1 and Level 3 Timings for EMV Cards
	Timing All EMV Cards at Level 1 
	Timing a RRP Test-Card at Level 3
	 Relaying & Disclosure to Mastercard

	A New Level1-based Relay-Protection for EMV: The L1RP Protocol
	Protocol Design
	Formal Verification of Security
	Practical Experiments

	Related Work
	Conclusions
	References
	Appendix A: The ISO 14443 Protocol
	ISO 14443-3
	ISO 14443-4

	Appendix B: The PayWave & VISA-L1 Protocols
	Appendix C: Timings Results
	Appendix D: EMV Acronyms & Models Differences

